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Abstract

An Influence Diagram is a probabilistic graphical model used to represent and solve decision problems under

uncertainty. Its evaluation requires performing several combinations and marginalizations on the potentials

attached to the Influence Diagram. Finding an optimal order for these operations, which is NP-hard, is an

element of crucial importance for the efficiency of the evaluation. In this paper, two methods for optimizing

this order are proposed. The first one is an improvement of the Variable Elimination algorithm while the

second is the adaptation of the Symbolic Probabilistic Inference for evaluating Influence Diagrams. Both

algorithms can be used for the direct evaluation of IDs but also for the computation of clique-to-clique mes-

sages in Lazy Evaluation of Influence Diagrams. In the experimental work, the efficiency of these algorithms

is tested with several Influence Diagrams from the literature.

Keywords: Influence Diagrams, Probabilistic Graphical Models, combinatorial Optimization Problem,

Exact Evaluation, Heuristic Algorithm, Lazy Evaluation

1. Introduction

Influence Diagrams (IDs) [3, 4] are an effective modelling framework for analysis of Bayesian decision

making under uncertainty. The goal of evaluating an ID is to obtain the best option for a single decision

maker (optimal policy) and its utility.

The evaluation algorithms proposed [5, 6, 7, 8] require performing several combinations and marginal-

izations on the potentials attached to the ID (probability and utility functions not necessarily normalized).

Finding an optimal order for these operations is a NP-hard problem [9] and it is an element of crucial im-

portance for the efficiency of the evaluation. The evaluation of an ID can be considered as a combinatorial
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optimization, that is the problem of finding an the optimal order in which combinations are performed. This

idea was already used to make inference in Bayesian Networks (BNs) with the first version of Symbolic Prob-

abilistic Inference algorithm (SPI) [10] and with an improved algorithm in the SPI family called set-factoring

[11]. In a related work [12] some experiments with SPI were performed to evaluate decision networks, however

no details of the algorithm were provided.

In this paper different approaches for optimizing the order of the operations involved in the evaluation of

IDs are considered. First, we describe the SPI algorithm for evaluating IDs taking into account the differences

of an ID compared to a BN: two kinds of potentials, the temporal order of decisions, etc. Secondly, an

optimization of Variable Elimination (VE) based on [13] is also proposed. This optimization consists of using

a greedy algorithm for minimizing the cost of the combination of all the potentials involved in the removal of

a variable. This optimization can be seen as an extension of the binary join trees of P.P. Shenoy [13] to IDs.

Both algorithms are described for the direct evaluation of IDs (without using any auxiliary structure) and

for the computation of clique-to-clique messages in Lazy Evaluation (LE) of IDs. In the experimental work,

we analyze the behaviour of all these algorithms using a set of IDs from the literature. It is demonstrated

that the algorithms proposed can improve the efficiency of the evaluation. Moreover, SPI outperforms VE

in many instances. We also propose a pre-analysis algorithm based on the number of arithmetic operations

that could help to predict which of the algorithms is the most appropriate one for evaluating each ID.

The paper is organized as follows: Section 2 introduces basic concepts about IDs; Section 3 describes two

algorithms present in the literature for evaluating IDs (VE and LE); in Section 4 the motivation of this work

is explained; the SPI algorithm for the direct evaluation of IDs is explained in Section 5 while the use of this

algorithm for computing clique-to-clique messages in LE of IDs is described in Section 6; the description of

the optimization of VE is given in Section 7; Section 8 includes the experimental work and results; finally

Section 9 details our conclusions and lines for future work.

2. Influence Diagrams

2.1. Definitions and Notation

An ID [3] is a probabilistic graphical model for decision analysis under uncertainty which contains three

kinds of nodes: decision nodes (squares) that correspond with the actions which the decision maker can

control; chance nodes (circles) representing random variables; and utility nodes (diamonds) representing the

decision maker preferences. Figure 1 shows an example of an ID.

We denote by UC the set of chance nodes, by UD the set of decision nodes, and by UV the set of utility

nodes. The decision nodes have a temporal order, D1, . . . , Dn, and the chance nodes are partitioned into a
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Figure 1: An example of an ID with the partial order: {A} ≺ D1 ≺ {B,C,E, F,G}.

collection of disjoint sets according to when they are observed: I0 is the set of chance nodes observed before

D1, and Ii is the set of chance nodes observed after decision Di is taken and before decision Di+1 is taken.

Finally, In is the set of chance nodes observed after Dn or never observed. That is, there is a partial order:

I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In. For example, the ID shown in Figure 1, contains a single decision D1. The

set of chance nodes I0 is {A} and the set I1 is {B,C,E, F,G}.

Some evaluation algorithms require a regularity property. An ID is regular if several conditions are

satisfied: the directed graph does not have directed cycles; the utility nodes has no successors (children), and

there is a directed path traversing all the decision nodes. This last condition implies a total ordering for the

decisions. The non-forgetting assumption is usually required as well: previous decisions and observations are

known at each decision. Information arcs that satisfy this condition (no-forgetting arcs) are usually assumed

implicit to reduce complexity of the graphical display. In this paper, we consider only regular, discrete IDs

and we assume non-forgetting arcs to be present.

In the description of an ID, it is more convenient to think in terms of predecessors and successors. Thus,

a node can belong to different sets in relation to another node:

• Informational predecessors: Let Di be a decision node, then the direct predecessors of Di are called

informational predecessors or informational parents. The set of all informational predecessors of Di is

denoted by pa(Di). Arcs into decisions are called informational arcs.

• Conditional predecessors: Let Xi be a chance or utility node, then the direct predecessors of Xi

are called conditional predecessors or conditional parents. The set of all conditional predecessors of Xi

is denoted by pa(Xi).

• Direct successors: Let Xi be a chance or decision node, then the set of all direct successors or children

of Xi are denoted by ch(Xi).
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The universe of the ID is U = UC ∪ UD = {X1, . . . , Xm}. Each chance node Xi ∈ UC has a conditional

probability distribution P (Xi|pa(Xi)) associated. In the same way, each utility node Vi ∈ UV has a utility

function U(pa(Vi)) associated. In general, we will talk about potentials (not necessarily normalized). Let us

suppose that each variable Xi takes values on a finite set ΩXi
= {x1, . . . , x|ΩXi

|}. The set of all variables

involved in a potential φ is denoted dom(φ), defined on Ωdom(φ) = ×{ΩXi
|Xi ∈ dom(φ)}. The elements

of Ωdom(φ) are called configurations of φ. Therefore, a probability potential denoted by φ is a mapping

φ : Ωdom(φ) → [0, 1]. A utility potential denoted by ψ is a mapping ψ : Ωdom(ψ) → R. The set of all

probability and utility potentials are denoted Φ and Ψ respectively.

2.2. ID Evaluation

The goal of evaluating an ID is to obtain an optimal policy δDi for each decision Di, that is a function of

a subset of its informational predecessors. The optimal policy maximizes the expected utility for the decision.

A strategy is an ordered set of policies ∆ = {δD1 , δD2 , . . . , δDn}, including a policy for each decision variable.

An optimal strategy ∆̂ returns the optimal choice the decision maker should take for each decision.

Policy and Expected Utility: Let ID be influence diagram over the universe U = UC ∪UD and let UV the

set of utility nodes. Let the temporal order of the variables be described as I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In.

Then:

(a) An optimal policy for Di is

δDi
(I0, D1, . . . , Ii−1) = arg max

Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

∏
X∈UC

P (X|pa(X))

( ∑
V ∈UV

U(pa(V ))

)
(1)

(b) The expected utility for Di (and acting optimally in the future) is:

EUDi
(I0, D1, . . . , Ii−1) =

1

P (I0, . . . , Ii−1|D1, . . . , Di−1)

max
Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

∏
X∈UC

P (X|pa(X))

( ∑
V ∈UV

U(pa(V ))

)
(2)

(c) The strategy ∆ for the ID, consisting of an optimal policy for each decision, yields the maximum expected

utility:
MEU(∆) =

∑
I0

max
D1

· · ·max
Dn

∑
In

∏
X∈UC

P (X|pa(X))

( ∑
V ∈UV

U(pa(V ))

)
(3)

2.3. Minimalization of an ID

Before the evaluation, an ID can be simplified (minimalization) by removing redundant informational

arcs and barren nodes. Let X be an informational predecessor of a decision Di, then the informational arc

between X and Di is redundant if X is d-separated [14, 15] from the utility nodes that are descendant of
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Di given the rest of informational predecessors and Di. In other words, X is non-requisite for computing

the optimal policy for Di. Any redundant arc can be removed in reverse order [16, 17]. Note that the d-

separation property for IDs [15, 18] is slightly different from the one defined for BNs [14] since, utility nodes

and informational arcs are ignored.

A chance or decision node is a barren node if it is sink, in other words, it has no successors or only barren

successors. For evaluating an ID, barren nodes have no impact on the decisions and therefore they can be

directly removed without processing [6]. After the minimalization, the parents of a decision compose its

relevant past. Figure 2 shows an example of minimalization of an ID where the redundant informational arc

(A,D1) can be removed. Then, barren nodes A and C can also be removed (chance node A becomes a barren

node after the removal of the redundant arc).

A

BC

D1 U1

B

D1 U1

=⇒

Figure 2: Example of minimalization of an ID

3. Review of Evaluation Algorithms

3.1. Variable Elimination

The Variable Elimination algorithm (VE) [18] is one of the most common algorithms used for evaluating

IDs. This algorithm has many similarities with the corresponding one for BNs [19]: it starts with a set of

potentials and it eliminates all the variables one by one. There are however some differences compared to the

VE algorithm for BNs. First, all the variables must be removed in reverse order of information precedence

given by ≺. Secondly, chance variables are removed using sum-marginalization whereas for decisions max-

marginalization is used. That is, it first sum-marginalizes In, then max-marginalizes Dn, sum-marginalizes

Ii−1, etc. This type of elimination order is called a strong elimination order [20]. The procedure for removing

a variable Xi is shown in Algorithm 1. It can be observed that the sets of potentials Φ and Ψ change along

the evaluation process. Initially, Φ and Ψ contain the potentials present in the specification of the ID.
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Algorithm 1: RemoveVariable

1 (ΦXi
, ΨXi

)← ({φ ∈ Φ|Xi ∈ dom(φ)}, {ψ ∈ Ψ|Xi ∈ dom(ψ)}) ; // Relevant potentials

2 (φXi
, ψXi

)← (
∏

ΦXi
,
∑

ΨXi
); // Combine

3 if Xi ∈ UC then

4 (φ′Xi
, ψ′Xi

)← (
∑
Xi
φXi

,
∑

Xi
φXi

ψXi

φ′Xi

) ; // sum-marginalize

5 else

6 (φ′Xi
, ψ′Xi

)← (maxXi
φXi

, maxXi
φXi

ψXi
) ; // max-marginalize

7 (Φ, Ψ)← ((Φ\ΦXi
) ∪ {φ′Xi

}, (Ψ\ΨXi
) ∪ {ψ′Xi

) ; // Update

In the original proposal of VE for evaluating IDs [18], the removal of a decision Di involves the max-

marginalization of Di from the probability potentials (line 6). However, when removing Di, often there is not

any probability potential containing Di and if any, it is a vacuous potential. Any decision is d-separated from

its predecessors [18] and any successor has already been removed (the removal order of the disjoint subsets

of variables must respect the temporal constraints). Thus, Di can be directly removed from probability

potentials without any computation.

The complexity of VE is linear in the size of the largest potential generated during the evaluation [21],

which will be the result of the combination of φXi
ψXi

in lines 4 and 6 of Algorithm 1. That is, the complexity

of VE for evaluating and ID with n variables (chance or decision) is O(n ·Nmax) where Nmax is the largest

potential ever created during the evaluation. However, the size of a potential is exponential in the number

of variables in its domain. Thus, the computational cost of the VE algorithm depends on the sizes of the

intermediate potentials generated. Note that the complexity can be related to the notion of treewidth [22, 23]

which is a measure of connectivity of the graph. Suppose we have an ID with treewidth w, then the complexity

of VE, following an optimal elimination order, is O(n · exp(w)).

3.2. Lazy Evaluation

Lazy Evaluation (LE) was already used for making inference in BNs [24], so it can be adapted for evaluating

IDs [7]. The basic idea of this method is to maintain the decomposition of the potentials and to postpone

computations for as long as possible, as well as to exploit barren variables. LE is based on message passing

in a strong junction tree, which is a representation of an ID built by moralization and by triangulating the

moral graph using a strong elimination order [20]. Nodes in the strong junction trees correspond to cliques

(maximal complete sub-graphs) of the triangulated graph. Each clique is denoted by Ci where i is the index

of the clique. The root of the strong junction tree is denoted by C1. Two neighbour cliques are connected
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by a separator which contains the intersection of the variables in both cliques. Figure 3 shows the strong

junction tree for the ID shown in Figure 1.

C1

A,B,D1

C4

C,B,D1, E, F,G

B,D1

Root

S4

ΦC1 = {P (A|B)}

ΦC4 = {P (C), P (E), P (F ), P (G), P (B|C,E, F,G)}
ΨC4 = {U1(D1, C, E), U2(D1, F,G)}

Φ∗
S4 = {φ(B)}

Ψ∗
S4

= {ψ(D1, B)} −→

Figure 3: Strong junction tree for the ID shown in Figure 1 with the potentials associated to each clique (right) and messages
stored at each separator (left).

Propagation is performed by message-passing. Initially, each potential is associated to the clique closest

to the root containing all its variables. These potentials are not combined, so during propagation each clique

and separator keeps two sets of potentials (one for probabilities and another for utilities). Sets of potentials

stored in a clique Cj are denoted ΦCj
and ΨCj

. Similarly, sets of potentials (or messages) stored in a separator

Sj are denoted Φ∗Sj
and Ψ∗Sj

. Message propagation starts by invoking the CollectMessage algorithm in the

root (Algorithm 2).

Algorithm 2: CollectMessage

/* Let Cj be a clique where Collect Message is invoked, then: */

1 Cj invokes Collect Message in all its children;

2 The message to the clique parent of Cj is built and sent by absorption (Algorithm 3);

A clique can send the message to its parent (Absorption) when it has received all the messages from

its children. Consider a clique Cj and its parent separator Sj . Absorption in Cj amounts to eliminating

the variables of Cj\Sj from the list of probability and utility potentials associated with Cj and with each

separator S′ ∈ ch(Cj) and then associating the obtained potentials with Sj . The original proposal [7] uses

VE for removing the variables. Thus we will refer to this method as VE-Lazy Evaluation (VE-LE).
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Algorithm 3: Absorption

/* Let Cj be a clique, Sj be the parent separator and S′ ∈ ch(Cj) be each of the child

separators. If Absorption is invoked on Cj, then: */

1 RSj ← ΦCj ∪ΨCj ∪
⋃
S′∈ch(Cj)(Φ

∗
S′ ∪Ψ∗S′) ; // Relevant potentials for computing RSj

2 X← {X|X ∈ Cj , X 6∈ Sj} ; // Variables to be removed

3 Choose a strong order to remove the variables in X;

4 Marginalize out all variables in X from RSj . Let Φ∗Sj
and Ψ∗Sj

be the set of probability and utility

potentials obtained;

5 Associate Φ∗Sj
and Ψ∗Sj

to the parent separator Sj ;

The propagation finishes when the root clique has received all the messages. The utility potential from

which each variable Di is eliminated during the evaluation should be recorded as the expected utility for the

decision Di. The values of the decision that maximizes the expected utility is the policy for Di. In case of

decisions that are attached to the root node, the expected utility and policy is calculated by marginalizing

out all variables in the root clique that do not belong to the relevant past of the decision.

4. Motivation

In order to explain the motivation of this paper, let us consider the ID shown in Fig. 1. The optimal

policy for D1 can be calculated directly from Eq.(1):

δD1
(A) = arg max

D1

∑
G,F,E,C,B

P (G)P (F )P (E)P (C)P (B|C,E, F,G)P (A|B) (U1(G,F,D1) + U2(E,C,D1)) (4)

The table representing the joint probability of all chance variables might be too large. For that reason,

some evaluation algorithms such as VE for IDs iteratively removes variables following a strong elimination

order (see Section 3.1). The advantage of VE is that the removal of a variable Xi only involves computations

with those potentials with Xi in their domain. Assuming that all the variables are binary, the optimal order

for removing variables in I1 is G,F,E,C,B and the computations done are:

1. Removal of G (96 multiplications, 48 additions, 32 divisions):

∑
G P (G) · P (B|C,E, F,G) =

∑
G φ(G,B|C,E, F ) = φ(B|C,E, F )∑

G φ(G,B|C,E,F )·U1(G,F,D1)

φ(B|C,E,F ) = ψ(D1, F,B,C,E)
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2. Removal of F (48 multiplications, 24 additions, 16 divisions):

∑
F P (F ) · φ(B|C,E, F ) =

∑
G φ(F,B|C,E) = φ(B|C,E)∑

F φ(F,B|C,E)·ψ(D1,F,B,C,E)

φ(F,B|C,E) = ψ(D1, B, C,E)

3. Removal of E (24 multiplications, 28 additions, 8 divisions):

∑
E P (E) · φ(B|C,E) =

∑
E φ(E,B|C) = φ(B|C)∑

E φ(E,B|C)·(ψ(D1,B,C,E)+U2(E,C,D1))

φ(B|C) = ψ(D1, B,C)

4. Removal of C (12 multiplications, 15 additions, 4 divisions):

∑
C P (C) · φ(B|C) =

∑
C φ(B,C) = φ(B)∑

C φ(B,C)·ψ(D1,B,C)

φ(C) = ψ(D1, B)

5. Removal of B (12 multiplications, 15 additions, 4 divisions):

∑
B φ(B) · P (A|B) =

∑
B φ(A,B) = φ(A)∑

B φ(A,B)ψ(D1,B)

φ(A) = ψ(D1, A)

We can see that the removal of I1 using VE with the optimal order requires 366 arithmetic operations

(192 multiplications, 110 additions and 64 divisions). Independently of the elimination order used to solve

this ID, VE will always have to combine the marginal potentials with a large potential. However, with a

re-order of the operations this situation can be avoided:

1. Removal of F,G (112 multiplications, 40 additions, 16 divisions):

∑
F,G P (B|C,E, F,G) · (P (F ) · P (G)) =

∑
F,G φ(B,F,G|C,E) = φ(B|C,E)∑

F,G φ(B,F,G|C,E)·U1(G,F,D1)

φ(B|C,E) = ψ(B,C,E,D1)

2. Removal of B,C,E (68 multiplications, 42 additions, 4 divisions):

∑
B,C,E (P (A|B) · (P (E) · P (C))) · φ(B|C,E) =

∑
B,C,E φ(A,E,C,B) = φ(A)∑

B,C,E φ(A,E,C,B)(ψ(B,C,E,D1)+U2(E,C,D1))

φ(A) = ψ(D1, A)

Now the removal of I1 requires 282 arithmetic operations (180 multiplications and 82 additions and 20

divisions). From this example we can deduce that sometimes it could be better to combine small potentials

even if they do not share any variable (e.g., P (E) and P (C)). This combination will never be performed
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using VE since it is guided by the elimination order. Thus, the efficiency of the evaluation can be improved

if an optimization of the order of both operations, marginalization and combination, is performed [11].

4.1. Definition of the Problem

Evaluating an ID can be seen as an optimization problem in which we try to find an order that minimizes

the cost of the operations involved in the evaluation. Moreover, due to temporal restrictions, the problem

can be divided into two sub-problems. The first one consists of finding the optimal order of the operations

involved in the removal of a set of chance variables from a set of probability and utility potentials.

Assume that we shall remove the set of chance variables X from the sets of probability and utility

potentials ΦX and ΨX (potentials with any variable of X in the domain). That is we shall calculate Eq. (5).

∑
X

∏
φX∈ΦX

φX

 ∑
ψX∈ΨX

ψX

 =
∑
X

∏
φX∈ΦX

φX

∑
X

(∏
φX∈ΦX

φX

(∑
ψX∈ΨX

ψX

))
∑

X

(∏
φX∈ΦX

φX

) (5)

Previous expression is a factorization of potentials, thus we should calculate the set of potentials Φ′X and

Ψ′X such that:

∏
φ′∈Φ′X

φ′ =
∑
X

∏
φX∈ΦX

φX
∑

ψ′∈Ψ′X

ψ′ =

∑
X

(∏
φX∈ΦX

φX

(∑
ψX∈ΨX

ψX

))
∑

X

(∏
φX∈ΦX

φX

) (6)

To compute previous expression we should find an optimal order for the operations of sum-marginalization,

multiplication, addition and division. Let Y ∈ X be a chance variable, let ΦY and ΨY be the set of probability

and utility potentials containing Y in the domain, Φ∗ = ΦX\ΦY and Ψ∗ = ΨX\ΨY . Applying the distributive

law, the removal of Y can be performed using Eq. (7).

∑
X\Y

 ∏
φ∗∈Φ∗

φ∗

∑
Y

∏
φY ∈ΦY

φY

 ∑
ψ∗∈Ψ∗

ψ∗ +

∑
Y

(∏
φY ∈ΦY

φY

(∑
ψY ∈ΨY

ψY

))
∑
Y

(∏
φY ∈ΦY

φY

)
 (7)

From Eq.(7) we get that a variable Y can only be removed if the product of all the potentials in ΦY has

been calculated. Moreover, the removal must be performed at the same time from the probability and utility

potentials. Similarly, the second sub-problem consists on finding the optimal order of all the operations

involved in the removal of a decision variable D from the set of utility potentials ΨD (potentials with D

in the domain). Then we should calculate Eq. (8). In this case, the decision variable is removed using

max-marginalization.

ψ′D = max
D

∑
ψD∈ΨD

ψD (8)
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In both sub-problems, we try to find the optimal order for all the operations involved. This optimization

will reduce the size of intermediate potentials and therefore the evaluation should be more efficient.

5. Symbolic Probabilistic Inference for IDs

5.1. Overview

The Symbolic Probabilistic Inference algorithm (SPI) was already used for making inference in BNs [10, 11].

This is also a greedy algorithm that considers the removal of a set of variables as a combinatorial factorization

problem. That is, SPI tries to find the optimal order for the combinations and marginalizations by choosing at

each step the best operation. Herein we describe how the SPI algorithm can be used for directly evaluating

IDs. The correctness and complexity analysis is shown in Appendix A. For evaluating IDs, as VE does,

SPI removes all variables in the decision problem in reverse order of the partial ordering imposed by the

information constraints (called a strong elimination order [20]). That is, it first sum-marginalizes In, then

max-marginalizes Dn, sum-marginalizes Ik−1, etc. The general scheme of SPI algorithm as presented in this

paper is shown in Algorithm 4.

Algorithm 4: SPI-algorithm

input : Φ,Ψ (sets of potentials in the ID),

{I0, D1, I1, . . . , Dn, In} (partitions of nodes in the ID)

1 for k ← n to 0 do

2 (ΦX,ΨX)← ({φ ∈ Φ|dom(φ) ∩ Ik 6= ∅}, {ψ ∈ Ψ|dom(ψ) ∩ Ik 6= ∅});
3 (Φ,Ψ)← (Φ\ΦX, Ψ\ΨX);

4 (Φ′X, Ψ′X)← RemoveChanceSet(Ik,ΦX,ΨX) ; // Algorithm 8

5 (Φ,Ψ)← (Φ ∪ Φ′X, Ψ ∪Ψ′X);

6 if k > 0 then

7 (ΦD,ΨD)← ({φ ∈ Φ|Dk ∈ dom(φ)}, {ψ ∈ Ψ|Dk ∈ dom(ψ)});
8 (Φ,Ψ)← (Φ\ΦD, Ψ\ΨD);

9 (Φ′D, ψ
′
D)← RemoveDecision(Dk,ΦD,ΨD) ; // Algorithm 10

10 (Φ,Ψ)← (Φ ∪ Φ′D, Ψ ∪ {ψ′D});

SPI and VE algorithms differ in the way they solve these problems: VE chooses at each step a variable

to remove while SPI chooses a pair of potentials to combine and eliminate variables when possible. In this

sense SPI is more fine-grained than VE. The latter only considers the next variable to eliminate, and not the

order in which potentials are combined.
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5.2. Combination Candidate Set

The SPI algorithm uses a data structure for storing the candidate pairs of potentials to combine in the

next iteration. Herein we introduce this data structure and detail the related algorithms used in posterior

sections.

Given a set of potentials ΦX, B is a combination candidate set defined as {{φi, φj}|φi, φj ∈ ΦX, φi 6= φj}.

That is, B contains all pairwise combinations of elements of ΦX. Algorithm 5 takes two input arguments: a

set of potentials ΦX and an existing combination candidate set B. If B is empty, this algorithm returns a set

B with all pairwise combinations of elements of ΦX. Otherwise, the algorithm adds the new pairs without

removing those pairs already in B. Notice that, if potentials are represented as tables, {φi, φj} is equivalent

to {φj , φi}. Thus the pair {φj , φi} is not added to B if {φi, φj} is already present (line 4). For example,

given a set of potentials ΦX = {φ1, φ2, φ3}, the combination candidate is {{φ1, φ2}, {φ1, φ3}, {φ2, φ3}}.

Algorithm 5: addPairwiseCombinations

input : ΦX = {φ1, φ2, . . . φm} (set of m potentials), B (existing combination candidate set)

output: B (updated combination candidate set)

1 for i← 1 to m− 1 do

2 for j ← i+ 1 to m do

3 p← {φi, φj};
4 if p /∈ B then

5 B ← B ∪ {p};

6 return B;

A pair is a set of two potentials, thus any operation with sets can be used with pairs. For example, given

the pairs p = {φ1, φ2}, p′ = {φ1, φ3} and p′′ = {φ3, φ4}, the intersection p ∩ p′ is {φ2} while the intersection

p ∩ p′′ is ∅. Thus, given a combination candidate set B and a pair p ∈ B, the removal of any pair p′ ∈ B

containing at least one potential in common with p is denoted as {p′ ∈ B|p′ ∩ p = ∅}. Similarly, the removal

of both potentials in p from a potential set ΦX is denoted as ΦX\p.

Once the pairwise combination candidate set is built, a pair of potentials should be selected to combine.

Algorithm 6 shows the procedure for selecting a pair from B minimizing any score or heuristic. Some examples

of these heuristics are later explained in Section 5.5.
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Algorithm 6: selectBest

input : B = {p1, . . . , pl} (combination candidate set with l pairs)

output: bestPair (the best pair in B minimizing any score)

1 minScore← +∞;

2 for i← 1 to l do

3 s← score(pi);

4 if s < minScore then

5 bestPair ← pi;

6 minScore← s;

7 return bestPair;

In the original proposal of SPI algorithm for BNs, the combination candidate set B does not contain

singletons. That is B is composed only of pairs of potentials. In our approach, the set B can also contain

singleton potentials containing any variable that can be directly removed. That is a variable which is only

present in one potential. With this improvement, the algorithm is not forced to combine at least two potentials

in order to remove the first variable. On the other hand, these variables are not directly removed because it

cannot be assured that the cost of this removal is lower that the cost of selecting a pair of potentials.

For example, let X = {A,B,C}, be a set of chance variables that we want to remove from the set of

probability potentials ΦX = {φ(A|B), φ(B|C,E), φ(C)}, then the candidate combination set generated is:

B =

{
{φ(A|B), φ(B|C,E)}, {φ(A|B), φ(C)}, {φ(B|C,E), φ(C)}, {φ(A|B)}

}
Previous set B contains the singleton {φ(A|B)} because variable A only belongs to the domain of this

potential and thereby it can be sum-marginalized without need of performing first a combination. Although

variable E only belongs to φ(B|C,E), this potential is not added as a singleton because E is not contained in

the set X of variables we aim to remove. The procedure for adding the singletons to an existing combination

candidate set B, given a set of variables X to remove from ΦX is shown in Algorithm 7.

Algorithm 7: addSingletons

input : ΦX = {φ1, φ2, . . . φ|Φ|} (set of potentials), X (set of variables to remove), B (existing

combination candidate set)

output: B (updated combination candidate set)

1 for i← 1 to |ΦX| do

2 if ∃Y ∈ dom(φi) ∩X|∀φ ∈ ΦX\{φi} : X 6∈ dom(φ) then

3 B ← B ∪ {{φi}} ; // {φi} is a singleton

4 return B;
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5.3. Removal of Chance Variables

In order to remove a subset of chance variables X from ΦX and ΨX, SPI considers probability and utility

potentials separately: first, SPI tries to find the best order for combining all potentials in ΦX as shown in

Algorithm 8. For that purpose, all possible pairwise combinations between the probability potentials are

stored in the set combination candidate set B (line 3). Besides, B also contains those probability potentials

or singletons (line 4) that contain any variable of X which is not present in any other potential of ΦX.

Algorithm 8: RemoveChanceSet

input : X (subset of chance variables), ΦX (set of probability potentials relevant for removing X),

ΨX (set of utility potentials relevant for removing X)

output: Sets of potentials Φ′X and Ψ′X resulting from removing X (Eq. (6)))

1 B ← ∅ ; // Empty combination candidate set

2 repeat

3 B ← addPairwiseCombinations(ΦX, B);

4 B ← addSingletons(ΦX,X, B);

5 p← selectBest(B);

6 if p is a pair then

7 φij ← φi · φj ; // p is a pair {φi, φj}

8 else

9 φij ← φi ; // p is a singleton {φi}

10 W← {W ∈ dom(φij) ∩X|∀φ ∈ ΦX\p : W 6∈ dom(φ)};
11 ΨW ← {ψ ∈ ΨX|W ∩ dom(ψ) 6= ∅};
12 if W 6= ∅ then

13 (φ′ij ,Ψ
′
W)← Sum-marginalize(W, φij ,ΨW);

14 else

15 (φ′ij ,Ψ
′
W)← (φij ,ΨW)

16 B ← {p′ ∈ B|p′ ∩ p = ∅} ; // Update

17 X← X\W;

18 ΦX ← (ΦX\p) ∪ {φ′ij}
19 ΨX ← (ΨX\ΨW) ∪Ψ′W

20 until X = ∅;
21 (Φ′X,Ψ

′
X)← (ΦX,ΨX);

22 return (ΦX,ΨX);
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At each iteration, an element of B is selected (line 5). If it is a pair (line 7), both potentials are combined.

The procedure stops when all variables in X have been removed. A variable can be removed at the moment it

only appears in a single probability potential. Thus, after each combination it is computed the set of variables

W ⊆ X satisfying such condition (line 10) and the set of utility potentials ΨW containing any variable in

W (line 11). If there is any variable that can be removed, a similar procedure is performed for combining

utilities and sum-marginalizing the variables in W (line 13). At the end of each iteration sets B,X,ΦX and

ΨX are updated. Notice that this algorithm produces a factorization of potentials as stated in Eq. (6).

To illustrate Algorithm 8, let us suppose we aim to remove the set of variables X = {A,C} from

ΦX = {φ(A), φ(C), φ(B|AC)} and ΨX = {ψ(A), ψ(A,B,C)}. Initially, the combination candidate set B is

{{φ(A), φ(C)}, {φ(A), φ(B|AC)}, {φ(C), φ(B|AC)}}. Suppose that our heuristic chooses the pair {{φ(A), φ(C)}

in line 5, then we combine both potentials obtaining φ(A,C) as a result in line 7. Notice that these two

potentials are never combined by the VE algorithm since they do not share any variable. The set of removable

variables W is equal to ∅ and the sum-marginalize algorithm is not invoked in line 13. At the end of this

iteration, set B is now empty and ΦX is {φ(A,C), φ(B|A,C)}. The sets X and ΨX have not changed. In

the second iteration the single pair in B = {{φ(A,C), φ(B|A,C)}} are combined, obtaining φ(A,B,C) as a

result. Now W is equal to {A,C} and the sum-marginalization algorithm is invoked in line 13.

In Algorithm 8 only probability potentials are combined while utility potentials are not. The utility

potentials must be combined with φij which is the resulting potential of combining all potentials containing

X. Thus, in order to avoid additional computations, the utilities are only combined when a variable can be

removed. That is the moment when φij has been calculated. The procedure for sum-marginalizing a set of

variables (Algorithm 9) involves finding a good order for summing the utility potentials. The procedure for

that is quite similar to the one for combining probabilities, the main difference is that at the moment a variable

can be removed, the probability and utility potentials resulting from the marginalization are computed (line

14). Notice that this procedure is invoked on ΨW ⊆ ΨX.
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Algorithm 9: Sum-marginalize

input : W (subset of chance variables), φ (probability potential relevant for removing W), ΨW (set

of utility potentials relevant for removing W)

output: Potential φ′ and set of potential Ψ′W resulting from removing W

1 B′ ← ∅ ; // Empty combination candidate set

2 if ΨW = ∅ then

3 return (
∑

W φ, ∅) ;

4 repeat

5 B′ ← addPairwiseCombinations(ΨW, B′);

6 B′ ← addSingletons(ΨW,W, B′);

7 q ← selectBest(B′);

8 if q is a pair then

9 ψij ← ψi + ψj ; // q is a pair {ψi, ψj}

10 else

11 ψij ← ψi ; // q is a singleton {ψi}

12 V← {V ∈ dom(ψij) ∩W|∀ψ ∈ ΨW\q : V 6∈ dom(ψ)};
13 if V 6= ∅ then

14 (φ′V, ψ
′
V)← (

∑
V φ,

∑
V(φ⊗ψij)

φ′V
);

15 else

16 (φ′V, ψ
′
V)← (φ, ψij);

17 B′ ← {q′ ∈ B′|q′ ∩ q = ∅} ; // Update

18 W←W\V;

19 φ = φ′V;

20 ΨW ← (ΨW\q) ∪ {ψ′V}
21 until W = ∅;
22 (φ′, Ψ′W)← (φ, ΨW);

23 return (φ, ΨW);

For sake of example, suppose Algorithm 9 is invoked to remove W = {A,C} from φ = φ(A,B,C) and

ΨW = {ψ(A), ψ(A,B,C)}. Initially, B’ is equal to {{ψ(A), ψ(A,B,C)}, {ψ(A,B,C)}}. Notice that now

the combination candidate set contains the singleton ψ(A,B,C) because variable C is in only one potential.

Suppose that in the first iteration we select this singleton, then V is equal to {C}. Thus in line 14 variable C

is sum-marginalize out obtaining as a result the potentials φ(A,B) and ψ(A,B). Now the sets are updated

as W = {A} and ΨW = {ψ(A), ψ(A,B)}. In the second iteration, B′ is {ψ(A), ψ(A,B)} so the utilities

potentials in the single pair are added and the sum-marginalization of A is performed. Finally the output of

the algorithm is the probability potential φ(B) and set of utilities {ψ(B)}.
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5.4. Removal of a Decision

The removal of a decision variable D from a set probability potentials ΦD and from a set of utility

potentials ΨD is shown in Algorithm 10. This procedure does not imply the combination of any probability

potential since any decision is d-separated from its predecessors [18] and any successor has already been

removed (the removal order of the disjoint subsets of variables must respect the temporal constraints). Thus,

any probability potential φ(Dk,X) must be directly transformed into φ(X) if Dk is a decision and X is a

set of chance variables that belong to Ii with i < k. In practice, this means that each probability potential

φ ∈ ΦD is restricted to any of the values d ∈ ΩD (step 3). This restriction is denoted φR(D=d).

Algorithm 10: RemoveDecision

input : D (decision variable), ΦD (set of probability potentials relevant for removing D),

ΨD (set of utility potentials relevant for removing D)

output: Φ′D (set of probability potentials resulting from removing D), ψ′D (utility potential resulting

from removing D)

1 Φ′D ← ∅;
2 foreach φ ∈ ΦD do

3 Φ′D ← Φ′D ∪ {φR(D=d)};

4 ψ′D ← max-marginalize(D,ΨD);

5 return (Φ′D, ψ
′
D);

Algorithm 11 shows the procedure for finding the best order for summing all utility potentials containing

a decision D. Notice that the pairwise candidate set does not contain singletons and the sum-marginalization

is performed once all utility potentials have been summed.

Algorithm 11: max-marginalize

input : D (decision variable), ΨD (set of utility potentials relevant for removing D)

output: ψ′D (utility potential resulting from removing D)

1 B′ ← ∅;
2 while |ΨD| > 1 do

3 B ← addPairwiseCombinations(ΨD, B
′);

4 q ← selectBest(B′);

5 ψij ← ψi + ψj ;

6 B′ ← {q′ ∈ B′|q′ ∩ q = ∅} ; // Update

7 ΨD ← (ΨD\q) ∪ {ψij};

8 Let ψD be the single potential in ΨD;

9 ψ′D ← maxD ψ
D;

10 δD ← arg maxD ψ
D

11 return ψ′D;
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In order to illustrate Algorithms 10 and 11, let us consider that we aim to remove decision D with ΩD =

{d0, d1, d2} from ΦD = {φ(A|D)} and ΨD = {ψ(A,D), ψ(D,B,A), ψ(D)}. In lines 2 and 3 of Algorithm 10,

decision is removed from. That is, Φ′D = {φ(A|D)R(D=d0)} = {φ(A)}. Then, max-marginalize(D,ΨD) is in-

voked. The combination candidate set B′ is {{ψ(A,D), ψ(D,B,A)}, {ψ(A,D), ψ(D)}, {ψ(D,B,A), ψ(D)}}.

Suppose that the pair {ψ(A,D), ψ(D)} is selected then both utility potentials are added giving as a re-

sult a new utility potential ψ(A,D). In the second iteration B′ is {{ψ(A,D), ψ(D,B,A)}} so the addition

ψ(D,B,A) = ψ(A,D) + ψ(D,B,A) is done. Finally, in lines 9 and 10 D is max-marginalized out and its

optimal policy is recorded.

5.5. Combination Heuristics

During the removal of a set of chance variables, at each iteration a pair of probability potentials is selected

to be combined (Algorithm 8, line 5). Since computing the cost of future combinations and marginalizations

could be extremely expensive, the decision must be taken using a heuristic. Some heuristics used with VE

for selecting the next variable to remove can be adapted for choosing a pair instead in the SPI algorithm.

Let p = {φi, φj} be a candidate pair to be combined, let φij = φi · φj be the resulting potential of the

combination. Then, the heuristics minimum size [25], and minimum weight [20] are defined as:

min size(p) = |dom(φi) ∪ dom(φj)| = |dom(φij)| (9)

min weight(p) =
∏

X∈dom(φij)

|ΩX | (10)

The previous heuristics choose the next pair to combine using only information from the probability

potentials involved. However, they do not consider if the pair chosen will imply a costly combination with

the utilities. As explained in Section 5.3, utilities are only combined at the moment a variable can be removed.

Let W be the set of variables that can be removed after combining potentials in the pair p, let ΨW be the

set of utility potentials containing any variable in W and let ψ =
∑
ψk∈ΨW

ψk. Then the heuristic minimum

utility can be defined as follows:

min utility(p) =
∏

X∈dom(φij)

|ΩX | ·
∏

Y ∈dom(ψ)\dom(φij)

|ΩY | (11)

Any of the heuristics previously mentioned can also be used for selecting a pair of utility potentials at

steps 7 and 4 of Algorithms 9 and 11 respectively. These heuristics will be considered in the experimental

analysis.
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5.6. Probabilistic Barren

A variable is probabilistic barren if it is barren when only the set of probability potentials of the ID is

considered. In other words, such variable only belongs to one probability potential and, at least to one utility

potential. Let Y be probabilistic barren and let φ(Y |XI) be a probability potential, then:∑
Y

φ(Y |XI) = 1XI

where 1XI
is a unity potential, that is a potential defined on XI assigning the value 1 to each configuration

of ΩXI
. When a probabilistic barren variable is removed, the sum-marginalization and division can be

avoided (Algorithm 9, line 14). By contrast, the sum-marginalization from the utility potentials cannot be

avoided. Unlike barren nodes (see Section 2.3), probabilistic barren variables cannot be removed during the

minimalization phase as they have impact on the decisions. In conclusion, the efficiency of the computation

can be improved if singletons are allowed and a detection a priori of probabilistic barren variables is performed.

This point is empirically demonstrated in the experimental section.

5.7. Example

Let us consider the ID in Fig. 1 in order to illustrate the behaviour of the SPI algorithm as described in

this paper. For sake of simplicity, φ(X1, . . . , Xn) will be denoted φX1,...,Xn
. First, SPI proceeds to remove

variables in the chance set I1 = {B,C,E, F,G} using Algorithm 8. The initial combination candidate set is:

{φC , φE}, {φC , φF }, {φC , φG}, {φC , φBCEFG}, {φC , φAB}, {φE , φF }, {φE , φG}, {φE , φBCEFG},

{φE , φAB}, {φF , φG}, {φF , φBCEFG}, {φF , φAB}, {φG, φBCEFG}, {φG, φAB}, {φBCEFG, φAB}

If the minimum size heuristic is used for selecting the next pair of potentials, there are 6 pairs minimizing

this score. Let us suppose that the pair {φC , φE} is chosen, then the resulting potential is φCE . At this point

there is not any variable that can be removed, since variables C and E are contained in another potential

(e.g., φBCEFG). Then, the set B is updated by removing pairs containing φC or φE and by adding new

pairwise combinations with φCE :

{φCE , φF }, {φCE , φG}, {φCE , φBCEFG}, {φCE , φAB}, {φF , φG},

{φF , φBCEFG}, {φF , φAB}, {φG, φBCEFG}, {φG, φAB}, {φBCEFG, φAB}

The process will keep on choosing pairs to combine until all variables have been removed. The whole

process is shown in Fig. 4 using three factor graphs [9]. Nodes without any parent correspond to initial

potentials while child nodes to the resulting potentials of a combination. The numbers above each potentials

indicate the combination order and arcs labels indicate the variables that are sum-marginalized.

19



φ
(9)
A

φ
(6)
ABCE

φ
(3)
ABCE

φ
(1)
CE

φC φE

φAB

φ
(4)
BCEFG

φ
(2)
FG

φF φG

φBCEFG

↓ {B,C,E}

↓ {F,G}

ψ
(5)
D1BCE

φBCEF ψD1FG

ψ
(8)
D1A

φABCE ψ
(7)
D1BCE

ψD1BCE ψD1CE

(a) (b) (c)

Figure 4: Combination order of the probability potentials obtained using SPI for removing the chance set I1 = {B,C,E, F,G}
during the evaluation of the ID shown in Fig.1

In the 4th iteration, after generating the potential φBCEFG, variables F and G can be removed. Then,

the Algorithm 9 is executed in order to combine utility potentials and max-marginalize these variables: the

combination candidate set of utility potentials is B = {{ψD1FG}} and the resulting potentials are φBCE

and ψD1BCE . Similarly, in the 5th iteration, variables B,C and E can be removed. Now, the combination

candidate set contains a pair and a singleton, that is B = {{ψD1CE , ψD1BCE}, {ψD1BCE}}. The element

selected from B is the pair {ψD1CE , ψD1BCE}. The variables B,C and E can be removed after adding both

utility potentials in the pair, thus it is not necessary to perform any additional iteration. The resulting

potentials are φA and ψD1A which are also, in this example, the resulting potentials in Algorithm 8. SPI will

now proceed to remove decision D1 using Algorithm 10 and chance variable A using Algorithm 8.

6. SPI Lazy Evaluation

LE is based on message passing between cliques in a strong junction tree (see Section 3.2). Basically, the

computation of these messages consists on removing variables not present in the parent separator from the

sets of potentials in a clique. The original approach [7] uses VE for removing the variables. Thus, we will

refer to this method as VE-Lazy Evaluation (VE-LE).

Here we propose SPI Lazy Evaluation (SPI-LE), which is a variant of Lazy Evaluation that uses SPI

instead of VE in order to compute the messages. This idea was already considered in a previous paper [26]

where the SPI algorithm was used in Lazy Propagation in BNs. The process for building the strong junction

tree and Collect Message algorithm are the same. The general scheme of the Absorption algorithm is slightly

different (see Algorithm 12).
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Algorithm 12: Absorption-SPI

/* Let Cj be a clique, Sj be the parent separator and S′ ∈ ch(Cj) be of each the child

separators. If Absorption is invoked on Cj, then: */

1 (Φ∗Sj
, Ψ∗Sj

)← (ΦCj ∪
⋃
S′∈ch(Cj) Φ∗S′ , ΨCj ∪

⋃
S′∈ch(Cj) Ψ∗S′) ; // Relevant potential sets

2 X← {X|X ∈ Cj , X 6∈ Sj} ; // Variables to remove

3 Partition X into disjoint subsets of chance variables or single sets of decisions. Determine a partial

order of the subsets that respects the temporal constraints: {X1 ≺ X2 ≺ · · · ≺ Xn} ;

4 for k ← n to 1 do

5 (ΦXk
, ΨXk

)← ({φ ∈ Φ∗S |Xk ∩ dom(φ) 6= ∅}, {ψ ∈ Ψ∗S |Xk ∩ dom(ψ) 6= ∅});

6 (Φ∗Sj
, Ψ∗Sj

)← (Φ∗Sj
\ΦXk

, Ψ∗Sj
\ΨXk

);

7 if Xk ⊆ UC then

8 (Φ′Xk
, Ψ′Xk

)← RemoveChanceSet(Xk,ΦXk
,ΨXk

) ; // Algorithm 8

9 (Φ∗Sj
, Ψ∗Sj

)← (Φ∗Sj
∪ Φ′Xk

, Ψ∗Sj
∪Ψ′Xk

);

10 else

11 Let Dk the single variable in Xk;

12 (Φ′Xk
, ψ′Xk

)← RemoveDecision(Dk,ΦXk
,ΨXk

) ; // Algorithm 10

13 (Φ∗Sj
, Ψ∗Sj

)← (Φ∗Sj
∪ Φ′Xk

, Ψ∗Sj
∪ {ψ′Xk

});

14 Associate Φ∗Sj
and Ψ∗Sj

to the parent separator Sj .

The main difference is that the set of variables to remove is partitioned into disjoint subsets of chance

variables or single sets of decisions because variables in a ID should be removed according to an order that

respects the temporal constraints. Notice that the removal of a subset of variables Xk is invoked only on

the set of potentials containing any variable in Xk. Another difference is the way variables are removed: in

SPI-LE, procedures explained in Sections 5.3 and 5.4 are used instead of VE.
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7. Optimization of Variable Elimination

When evaluating an ID using the VE algorithm, variables are removed in reverse order of information

precedence (see Section 3.1). The removal of a variable Xi implies combining all probability and utility

potentials with Xi in the domain (Algorithm 1 line 2). Here we propose using a greedy algorithm for

optimizing the combination of the potentials involved in the removal of a variable. The procedure for

combining a set of probability potentials is shown in Algorithm 13.

Algorithm 13: combineProbabilities

input : ΦXi (set of probability potentials relevant for removing Xi)

output: φXi
(probability potential resulting from combining all the potentials in ΦXi

)

1 B ← ∅;
2 while |ΦXi

| > 1 do

3 B ← addPairwiseCombinations(ΦXi , B);

4 p← selectBest(B) ; // p is a pair {φi, φj}
5 φij ← φi · φj ;
6 B ← {p ∈ B′|p′ ∩ p = ∅} ; // Update

7 ΦXi ← (ΦXi\p) ∪ {φij};

8 Let φXi
be the single potential in ΦXi

;

9 return φXi
;

This algorithm is quite similar to the procedure used by Shenoy [13] for building the binary join trees.

However, in our approach no tree-like structure is created, potentials are directly combined. A similar

approach must be considered for adding all utility potentials (see Algorithm 14).

Algorithm 14: addUtilities

input : ΨXi
(set of utility potentials relevant for removing Xi)

output: ψXi
(probability potential resulting from combining all the potentials in ΨXi

)

1 B′ ← ∅;
2 while |ΨXi | > 1 do

3 B′ ← addPairwiseCombinations(ΨXi
, B′);

4 q ← selectBest(B′) ; // q is a pair {ψi, ψj}
5 ψij ← ψi + ψj ;

6 B′ ← {q′ ∈ B′|q′ ∩ q = ∅} ; // Update

7 ΨXi
← (ΨXi

\q) ∪ {ψij};

8 Let ψXi
be the single potential in ΨXi

;

9 return ψXi
;

22



8. Experimental work

8.1. Procedure and Objectives

In general, the aim of the experimental work is to analyze the behaviour of all the algorithms considered

in the paper. We compare VE and SPI for directly evaluating an ID and for computing clique-to-clique

messages in LE as well. The objectives of this experimentation are:

(a) Analyze if the SPI algorithm offers better results if probabilistic barren nodes are exploited and single-

tons are allowed. The combination heuristics explained in Section 5.5 are also compared.

(b) Compare the improved version of VE (Section 7) with the original one.

(c) Compare the algorithms VE and SPI.

A set of 18 IDs from the literature are used: NHL and Jaundice are two real world IDs used for medical

purposes [27, 28]; the oil wildcatter’s problem with one and two utilities [29, 30]; an ID representing the

Car Buyer problem [31]; an ID used to evaluate the population viability of wildlife species [32]; the Chest

Clinic ID [33] obtained from the Asia BN; an ID representing the decision problem in the poker game [18];

two different IDs used at agriculture for treating mildew [18]; an ID to model a simplified version of the dice

game called Think-box 1; and ID for solving the maze problem [34]; finally, three synthetic IDs are used: the

motivation example shown in Figure 1 and two IDs proposed by Jensen et al.[8]. The details of these IDs

are shown in Table 1, which contains the number of nodes of each kind, the size of the largest partition Ii of

chance nodes and the total table size (number of entries in a table containing all the variables).

To compare VE and SPI for computing the clique-to-clique messages, a strong junction tree is built from

each ID using the minimum size heuristic [25] for triangulating the graph. Table 2 shows, for each tree, the

number of cliques, the minimum and maximum clique sizes |C| and clique weights w(C).

The SPI algorithm and the improved version of VE may have non-trivial additional computational costs

for selecting the next potentials to combine. In order to check that these new algorithms do not have a

large overhead, all the comparisons are made in terms of computation time 2. Moreover, the portion of time

corresponding to this overhead is shown in all the graphics. To avoid the influence of outliers, each ID is

evaluated 100 times with each evaluation scheme.

1http://www.hugin.com/technology/samples/think-box
2The raw data obtained in the experimentation can be found in http://leo.ugr.es/rcabanas/spi/
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average
ID Chance Nodes Decisions Utilities max |Ii| potential size

Motivation ID 6 1 2 5 27.5

Oil 2 2 2 1 7.25

Oil Split Costs 2 2 3 1 6.2

NHL 17 3 1 11 468.111

Jaundice 21 2 1 10 41.5

Maze 14 2 1 6 3100.2

Car Buyer 3 3 1 1 64.5

Mildew 1 6 1 2 6 28.375

Mildew 4 7 2 2 4 32.222

Poker 7 1 1 7 94

ChestClinic 8 2 2 5 5.2

Appendicitis 4 1 1 2 3.6

Jensen et al. 1 4 2 2 3 5

Jensen et al. 2 12 4 4 8 4.875

Thinkbox 5 2 4 2 20.444

Threat of Entry 3 9 1 3 46

Wildlife 9 1 1 9 5

Competitive Asymm. 10 9 1 10 35.182

Table 1: Features of the IDs used in the experimentation.

|C| w(C)
Cliques min max min max

Motivation ID 2 3 6 30 432

Oil 1 4 4 36 36

Oil Split Costs 1 4 4 36 36

NHL 8 5 12 32 5.530·105

Jaundice 9 4 12 16 1.555·105

Maze 3 5 12 1.984·104 4.032·105

Car Buyer 1 6 6 384 384

Mildew 1 2 3 3 64 112

Mildew 4 4 4 6 256 9408

Poker 5 3 3 32 324

ChestClinic 5 3 6 8 64

Appendicitis 1 4 4 16 16

Jensen et al. 1 3 3 4 8 16

Jensen et al. 2 9 3 5 8 32

Thinkbox 2 4 6 8 384

Threat of Entry 3 4 9 48 1728

Wildlife 7 3 4 8 16

Competitive Asymm. 3 4 6 96 1152

Table 2: Features of the strong junction trees used for the experimental work obtained with minimum size heuristic.

8.2. Singletons and Probabilistic Barren

Here, the objective (a) is considered, that is we analyze if the efficiency of the computation can be

improved if singletons are allowed and a detection a priori of probabilistic barren is performed. For that

purpose each ID is evaluated using different schemes and algorithms. For the basic version of the SPI

algorithm, four evaluation schemes are considered: SPI, SPIB , SPIS and SPIBS where the subscript B
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means that probabilistic barren nodes are detected and the subscript S means that singletons are allowed.

Similarly, each ID is also evaluated using the SPI-LE algorithm considering the schemes SPI-LE, SPI-LEB ,

SPI-LES and SPI-LEBS . Figure 5 shows the average computation time needed for evaluating each ID

using the schemes of the basic version of the SPI algorithm. The combination heuristics considered are those

explained in Section 5.5. For the majority of the IDs, the algorithm without any improvement (SPI) offers

the worst performance. By contrast, the best results are obtained if both of the improvements proposed are

applied (SPIBS). This scheme is the fastest for evaluating 11, 14, and 10 networks when using the heuristics

min size, min weight and min utility respectively.

If we analyze the effect of adding singletons to the combination candidate set, we can observe that for

some large IDs such as NHL the computation time can increase if these improvements are considered (SPIS

and SPIBS with min weight heuristic). The reason for that is that the search space is too large and the

algorithm will give preference to selecting singletons even if the operations with the utilities are costly. This

problem disappears if the heuristic considers the cost of operations with the utility (min utility). The

detection of probabilistic barren nodes (SPIB) does not have any drawback: it is a simple procedure that

will never increase the number of operations and in many cases will reduce it.

Figure 5 also includes the overhead introduced by the SPI algorithm (bars in black). That is, the time

required for selecting the next pair to combine (operations with the combination candidate set) and for

updating the sets of potentials and variables. It can be observed that for most of the IDs, this overhead is

small or insignificant: most of the time corresponds with the time required for computing with potentials.

However, when evaluating the Wildlife ID the overhead is high. In this ID, all the chance nodes are in a single

and large partition I. As the overhead increases exponentially in the number of potentials, the overhead will

be high. Even though there are other IDs with partitions of a similar size, they contain larger potentials. As

a consequence, the overhead is smaller compared to the time required for computing with potentials.

Table 3 shows the total time for evaluating all the IDs. It can be observed that the lowest cumulative time

is obtained with SPIBS using the minimum utility heuristic. Considering also that, in most of the IDs, the

scheme SPIBS offers the best performance and that the heuristic min weight avoids the problems produced

by considering the singletons, we state that the best results are obtained with SPIBS using the minimum

utility heuristic.
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Figure 5: Comparison of the computation time using the basic version of the SPI algorithm with different combination heuristics
and considering the improvements of singletons and probabilistic barren(SPIB , SPIS and SPIBS) and without them (SPI).

min size min weight min utility

SPI 21540 35100 345100

SPIB 21350 34980 343800

SPIS 35400 73960 17650

SPIBS 31730 69250 16420

Table 3: Cumulative time (ms) for evaluating all the IDs using the basic version of the SPI algorithm with different combination
heuristics and considering the improvements of singletons and probabilistic barren (SPIB , SPIS and SPIBS) and without them
(SPI).

Similarly, Figure 6 shows the average time required for evaluating each ID using the four schemes of

LE with SPI for computing the clique-to-clique messages (SPI-LE, SPI-LEB , SPI-LES and SPI-LEBS).

This evaluation time includes the time required for building the strong junction tree and for propagating

the messages. It can be observed that, for most of the IDs considered, SPI-LEBS is the most efficient

scheme. Moreover, it can also be observed that the problem with large IDs such as NHL in the growth of the

evaluation time disappears: the search space for selecting a pair is now smaller (a large part of this search is

now made during the building of the strong junction tree). In fact, there are less differences between schemes

and heuristics: the combinatorial problem is divided into several sub-problems. As a consequence there is less

room for improvement but the overhead is smaller. In fact, the large overhead introduced by the algorithm

for evaluating the Wildlife ID is now insignificant. SPI-LEBS with minimum weight will be considered as
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the best scheme since it offers the best results for all the IDs used in the experimentation. In addition, the

lowest cumulative time for evaluating all the IDs is obtained with this heuristic (see Table 4).

Figure 6: Comparison of the average computation time using the basic version of the SPI-LE algorithm with different combination
heuristics and considering the improvements of singletons and probabilistic barren (SPI-LEB , SPI-LES and SPI-LEBS) and
without them (SPI-LE).

min size min weight min utility

SPI-LE 12800 12050 12610

SPI-LEB 11790 10880 11410

SPI-LES 12980 12160 12690

SPI-LEBS 11210 10590 11100

Table 4: Cumulative time for evaluating all the IDs using the basic version of the SPI-LE algorithm with different combination
heuristics and considering the improvements of singletons and probabilistic barren (SPI-LEB , SPI-LES and SPI-LEBS) and
without them (SPI-LE).

8.3. Optimization of Variable Elimination

In Section 7 a variation of the algorithm VE is proposed. This version of the algorithm optimizes the

combination of the potentials involved in the removal of a variable using a greedy algorithm. Thus, the per-

formance of VE should be improved (objective (b)). In order to simplify the experimentation, the equivalent

heuristic used for selecting the variable to remove is used for selecting the pair of potentials to combine. In

particular, heuristics minimum size and minimum weight are considered.
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Figure 7 shows the computation time required by the basic version of V E and the optimized one (V Eopt)

for evaluating each ID. For most of the IDs, the optimized version requires less time and, in those IDs where

V Eopt offers the worst performance, the results are quite similar. These graphics also include the overhead

introduced by the optimization but also the one corresponding to the time required for choosing the next

variable to remove. It can be observed that the optimization does not introduce a large overhead.

Figure 7: Comparison of the average computation time required by V E and the optimized version with different heuristics.

V Eopt using minimum size or minimum weight heuristics are considered as the best configuration schemes

since the total time for evaluating all the IDs are the lowest (see Table 5).

min size min weight

V E 1749 1751

V Eopt 1532 1534

Table 5: Cumulative time for evaluating all the IDs using V E and the optimized version with different heuristics.
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Similarly, Figure 8 shows the comparison of LE using both methods for computing the clique-to-clique

messages (V E-LE and V Eopt-LE). Again, the optimized version is faster for evaluating most of the IDs.

V Eopt-LE with any of the heuristics are considered as the best configuration schemes for computing the

clique-to-clique messages since the cumulative time is the lowest (see Table 6).

Figure 8: Comparison of the average computation time required by the basic V E−LE and the optimized version with different
heuristics.

min size min weight

V E-LE 9045 9048

V E-LEopt 8621 8662

Table 6: Cumulative time for evaluating all the IDs using V E − LE and the optimized version with different heuristics.
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8.4. Comparison of SPI and VE

In previous subsections, it has been studied which is the best configuration for the algorithms SPI and

VE. Figure 9 shows the average computation time comparing the best scheme of V E against SPI and the

best scheme of V E-LE against SPI-LE for evaluating each ID (objective (c)). First, it is compared V Eopt

using minimum size heuristic against SPIBS with minimum utility heuristic. The SPI algorithm offers the

best results in 10 out 18 IDs. If we analyze those IDs were VE offers better performance than SPI, in 3

of them there are not great differences (ChestClinic, Jensen et al. 2 and Threat of Entry). Secondly both

algorithms are also compared for computing clique-to-clique messages. That is V E-LEopt using minimum

size heuristic against SPIBS with minimum weight heuristic. Now the SPI algorithm for computing the

messages offers the best results for evaluating 16 out of 18 IDs.

Figure 9: Average computation time comparing the best scheme of V E against SPI and the best scheme of V E-LE against
SPI-LE for evaluating each ID.
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8.5. Pre-analysis algorithm

In the results previously given, we have seen that SPI can outperform V E in many IDs. However, it

cannot be assured that this will always be the case. The efficiency of these algorithms depend on several

heuristics for determining the order of the operations involved in the evaluation. Therefore, we cannot assure

which method (or heuristic) will offer the best results with a given ID until we evaluate it. However, we know

that there is a correlation between the number of arithmetic operations and the efficiency of the methods.

Table 7 shows the number of arithmetic operations and evaluation time for evaluating each ID with V Eopt

and SPIBS using the heuristics min size and min utility respectively. It can be observed that in 16 out

of 18 a reduction in the number of operations means a reduction in the evaluation time. In the largest IDs

(NHL, Jaundice and Maze), where it is more important to determine which is the best method, there is a

high correlation. By contrast, in the Car Buyer and Mildew 1 IDs the reduction in the number of operations

does not means a reduction in the evaluation time. These two IDs are quite small and the time required by

the arithmetic operations has a lower weight in the total evaluation time.

# operations time (ms.)
V Eopt SPIBS V Eopt SPIBS time

ID min size min utility min size min utility pre-analysis

Motivation ID 5939 1982 9.927 2.776 2.4

Oil 133 121 2.456 0.932 3.319

Oil Split Costs 145 133 2.794 1.354 1.753

NHL 3.570·106 2.384·106 1.031·104 6240.162 75.438

Jaundice 4.791·105 8.704·105 1227.203 1639.544 220.016

Maze 1.802·106 4.846·106 3515.281 8256.285 48.482

Car Buyer 1375 1487 9.536 4.748 3.334

Mildew 1 395 511 3.211 1.361 1.884

Mildew 4 3.272·104 4.432·104 44.636 45.154 6.446

Poker 1586 7034 6.573 9.163 2.886

ChestClinic 593 2465 9.601 10.52 3.572

Appendicitis 65 59 2.309 0.896 1.721

Jensen et al. 1 123 119 3.351 1.105 3.95

Jensen et al. 2 449 779 20.725 24.358 6.358

Thinkbox 1891 1793 11.31 7.079 3.86

Threat of Entry 3755 3971 86.247 87.95 4.774

Wildlife 155 163 17.657 46.948 5.092

Competitive Asymm. 3431 3135 39.094 36.536 2.747

Table 7: Number of arithmetic operations and evaluation time for evaluating each ID with V Eopt and SPIBS using the heuristics
min size and min utility respectively. The time for evaluating each ID with both methods in a qualitative way is also given
(pre-analysis time)

Taking into account this correlation, a pre-analysis algorithm for predicting which method is the most

efficient one can be developed. This algorithm computes the number of arithmetic operations by evaluating

an ID with each method in a qualitative way. This kind of evaluation is similar to the numerical (usual)

evaluation but it does not perform the operations with potentials (domain of the resulting potentials are only
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computed). As the pre-analysis algorithm knows the domains of potentials involved in each operation with

potentials, the number of arithmetic operations can be easily computed. Finally, the pre-analysis algorithm

will base its decision on the number arithmetic operations.

In the rightmost column of Table 7, the time for performing this pre-analysis. It can be observed that,

for large IDs, the pre-analysis time is much more smaller than the time required for evaluating the ID. By

contrast, in smaller IDs, this pre-analysis could take more time than the evaluation.

9. Conclusions and future work

In this paper two algorithms for optimizing the operation order in the evaluation of IDs are described.

First, the details of the adaptation of the SPI algorithm for evaluating IDs are given. This method was

already used for making inference on BNs and it is more fine-grained than other methods in the literature

such as VE. For this adaptation, differences between IDs and BNs have been taking into account: two kinds of

potentials, temporal order between variables, etc. Secondly, an optimization of VE have also been proposed.

This improved version consists of using a greedy algorithm for minimizing the cost of the combination of

all the potentials involved in the removal of a variable. Both algorithms have been described for the direct

evaluation of IDs and for the computation of clique-to-clique messages as well.

In the experimental work, these algorithms have been tested using a set of IDs from the literature. It has

been demonstrated that, for many of the IDs considered, the SPI algorithm is more efficient if singletons are

allowed and a priori detection of probabilistic barren is performed. For some large IDs the improvement of

allowing singletons can produce an important growth in the evaluation time. However, this problem is solved

if a combination heuristic that also considers the size of the utility potentials is used. For the computation

of clique-to-clique messages, where the search space is smaller, this growth disappears. By contrast, the

detection of probabilistic barren will never increase the evaluation time (it will remain the same or lower).

Secondly, it has also been demonstrated that the optimized version of VE offers better results than the basic

version. Finally, the best configuration schemes of both algorithms have been compared. For the direct

evaluation of IDs and for the clique-to-clique message computation, SPI can outperform VE in many IDs.

The SPI algorithm used only considers next pair of potentials to combine. Thus, a line of future research

could be studying the behaviour of the algorithm using a higher neighbourhood degree. It could also be

interesting making a study that let us to characterize which features of an ID make it for a possible candidate

for choosing SPI over VE. Concerning to the pre-analysis, alternatives indicator to the number of operations

could be studied.
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Appendix A. Correctness and Complexity of the SPI Algorithm

Herein we prove the correctness of the SPI algorithm by proving that it is a correct reordering of the

operations used by VE (the correctness of VE can be found in [18]). Evaluating an ID involves performing

several sum-marginalizations and max-marginalizations of the variables in the ID (see Eq. (1), (2) and (3)).

The order of these two operations are not interchangeable and therefore variables must be removed according

to a strong elimination order. This condition is satisfied by the SPI algorithm (as described in Algorithm 4):

RemoveChanceSet sum-marginalizes out In, RemoveDecision max-marginalizes out Dn, RemoveChanceSet

sum-marginalizes out In−1, etc.

As explained in Section 4.1, the RemoveChanceSet algorithm should give as a result a factorization of

probability potentials such that
∑

X

∏
φX∈ΦX

φX. Let us suppose that our method aims to remove a set

of variables V ⊆ X (Algorithm 9, line 14). Previously all probability potentials in Φ′X ⊆ ΦX have been

combined. In other words the input argument φ of Algorithm 9 is equal to
∏
φX∈ΦX

φX. Notice that it is

guaranteed that any probability potential containing any variable in V has been combined (Algorithm 8, line

12). Using the distributive law we get:

∑
X

∏
φX∈ΦX

φX =

=
∑
X

 ∏
φX∈ΦX\Φ′X

φX
∏

φi∈Φ′X

φi

 =

=
∑
X\V

 ∏
φX∈ΦX\Φ′X

φX
∑
V

∏
φi∈Φ′X

φi

 =

=
∑
X\V

 ∏
φX∈ΦX\Φ′X

φX
∑
V

φ

 =

=
∑
X\V

 ∏
φX∈ΦX\Φ′X

φXφ
′
V
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We see that the result of eliminating V implies removing each potential in Φ′X and replacing them

by φ′V . This is done in line 18 of Algorithm 8. Therefore operations with probability potentials are cor-

rect. Similarly, RemoveChanceSet algorithm should give also as a result a factorization of utility potentials

α
∑

X

∏
φX∈ΦX

φX

(∑
ψX∈ΨX

ψX

)
with α =

∑
X

∏
φX∈ΦX

φX. Let us now consider computations with utility

potentials needed for removing V. Previously all the addition of all utility potentials in Ψ′X ⊆ ΨX has been

done. Notice that it is guaranteed that any utility potential containing any variable in V has been combined

(Algorithm 9, line 13). Using the distributive law we get:

α
∑
X

∏
φX∈ΦX

φX

 ∑
ψX∈ΨX

ψX

 =

= α
∑
X

 ∏
φX∈ΦX\Φ′X

φX
∏

φi∈Φ′X

φi

 ∑
ψX∈ΨX\Ψ′X

ψX +
∑

ψi∈Ψ′X

ψi

 =

= α
∑
X

 ∏
φX∈ΦX\Φ′X

φX
∏

φi∈Φ′X

φi
∑

ψX∈ΨX\Ψ′X

ψX +
∏

φX∈ΦX\Φ′X

φX
∏

φi∈Φ′X

φi
∑

ψi∈Ψ′X

ψi

 =

= α
∑
X\V

∏
φX∈ΦX\Φ′X

φX
∑
V

∏
φi∈Φ′X

φi

 ∑
ψX∈ΨX\Ψ′X

ψX +

∑
V

(∏
φi∈Φ′X

φi
∑
ψi∈Ψ′X

ψi

)
∑

V

∏
φi∈Φ′X

φi

 =

=

∑
X\V

∏
φX∈ΦX\Φ′X

φXφ
′
V

(∑
ψX∈ΨX\Ψ′X

ψX + ψ′V

)
∑

X\V
∏
φX∈ΦX\Φ′X

φXφ′V

From previous expression, we see that the result of eliminating V also implies removing each potential

in Ψ′X and replacing them by ψ′V . This is done in line 20 of Algorithm 9. Therefore, operations with utility

potentials are also correct.

When removeDecision is invoked for removingDn out of ΨD, the result should be ψ′D = maxD
∑
ψD∈ΨD

ψD.

This procedure is correct since in Algorithm 11 max-marginalization operation is not made until the addition

of all utility potentials is performed.

Similarly to VE, the complexity of the SPI algorithm is also linear to the size of the largest potential

generated during the evaluation. The largest potential will be obtained right before the sum-marginalization

or max-marginalization of a variable. That is, the result of the combination φ ·ψij in lines 14 of Algorithm 9

or the potential ψD in line 8 of Algorithm 11. Thus, the complexity of the SPI algorithm for evaluating and

ID with n variables (chance or decision) O(nN ′max) where N ′max is the largest potential ever created during

the evaluation. However the size of a potential is exponential to the number of variables in its domain. Thus,

the computational cost of the VE algorithm depends on the sizes of the intermediate potentials generated

and on the order of operations with potentials.
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[28] C. Bielza, M. Gómez, R. S. Insua, J. A. Fernández del Pozo, B. G. P., S. Caballero, M. Sánchez Luna,

Ictneo system for jaundice management, Revista de la Real Academia de Ciencias Exactas, F́ısicas y

Naturales 92 (4) (1998) 307–315.

[29] H. Raiffa, Decision analysis: Introductory lectures on choices under uncertainty., Addison-Wesley, 1968.

[30] P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter, Probabilistic networks and expert systems: Exact com-

putational methods for Bayesian networks, Springer, 2007.

[31] R. Qi, L. Zhang, D. Poole, Solving asymmetric decision problems with influence diagrams, in: Proceed-

ings of the Tenth international conference on Uncertainty in artificial intelligence, Morgan Kaufmann

Publishers Inc., 1994, pp. 491–497.

[32] B. Marcot, R. Holthausen, M. Raphael, M. Rowland, M. Wisdom, Using bayesian belief networks to

evaluate fish and wildlife population viability under land management alternatives from an environmental

impact statement, Forest ecology and management 153 (1) (2001) 29–42.

[33] C. Goutis, A graphical method for solving a decision analysis problem, Systems, Man and Cybernetics,

IEEE Transactions on 25 (8) (1995) 1181–1193.

[34] C. Yuan, X. Wu, E. Hansen, Solving multistage influence diagrams using branch-and-bound search,

Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010 (2010) 691–700.

37


	Introduction
	Influence Diagrams
	Definitions and Notation
	ID Evaluation
	Minimalization of an ID

	Review of Evaluation Algorithms
	Variable Elimination
	Lazy Evaluation

	Motivation
	Definition of the Problem

	Symbolic Probabilistic Inference for IDs
	Overview
	Combination Candidate Set
	Removal of Chance Variables
	Removal of a Decision
	Combination Heuristics
	Probabilistic Barren
	Example

	SPI Lazy Evaluation
	Optimization of Variable Elimination
	Experimental work
	Procedure and Objectives
	Singletons and Probabilistic Barren
	Optimization of Variable Elimination
	Comparison of SPI and VE
	Pre-analysis algorithm

	Conclusions and future work
	Correctness and Complexity of the SPI Algorithm

