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Evaluating Interval-Valued Influence DiagramsI
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Galleria 2, 6928 Manno (Lugano), Switzerland.

Abstract

Influence diagrams are probabilistic graphical models used to represent and solve se-
quential decision problems under uncertainty. Sharp numerical values are required to
quantify probabilities and utilities. This might be an issue with real models, whose
parameters are typically obtained from expert judgements or partially reliable data.
We consider an interval-valued quantification of the parameters to gain realism in the
modeling and evaluate the sensitivity of the inferences with respect to perturbations in
the sharp values of the parameters. An extension of the classical influence diagrams
formalism to support such interval-valued potentials is presented. The variable elimi-
nation and arc reversal inference algorithms are generalized to cope with these models.
At the price of an outer approximation, the extension keeps the same complexity as
with sharp values. Numerical experiments show improved performances with respect
to previous methods. As a natural application, we propose these models for practical
sensitivity analysis in traditional influence diagrams. The maximum perturbation level
on single or multiple parameters preserving the optimal strategy can be computed. This
allows the identification of the parameters deserving a more careful elicitation.

Keywords: Influence diagrams, Bayesian networks, credal networks, probability
intervals, sequential decision making, interval dominance, sensitivity analysis.

1. Introduction

Influence diagrams (IDs) are popular probabilistic graphical models intended to
represent and solve decision problems with uncertainty. IDs represent a sophistication
of Bayesian networks to cope with sequential decision tasks. The parameters of an
ID are not only, as in Bayesian networks, probabilities of conditional states of single
variables given other variables, but also utilities of joint states of sets of variables. As
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Bayesian networks, IDs demand a sharp estimation of their parameters. Both probabil-
ities and utilities might be quantified by expert knowledge or statistical data processing.
Yet, sharp values can be unable to express a qualitative expert judgement or a statisti-
cal analysis based on scarce or missing data. E.g., which is the number modeling the
probability for an option more probable than its negation? And the negative utility of a
disaster scenario that never occurred in the past?

For reasons of this sort, in the last two decades, various extensions of Bayesian
networks intended to support generalized probabilistic statements have been proposed.
These models have been developed in the field of possibility theory [4], evidence the-
ory [28], and imprecise probability [9]. The latter models, called credal networks, offer
a direct sensitivity-analysis interpretation: a credal network is a collection of Bayesian
networks, all over the same variables and with the same graph, whose parameters are
consistent with constraints (e.g., interval specifications) modeling a limited ability in
the assessment of sharp estimates. Something similar has been also done with decision
trees [16, 17, 19], while the situation is different for IDs. The early attempts of Fer-
tig and Breese [13] first, and Zaffalon [11] after, to extend these models to non-sharp
quantification are among the few works in this direction.12 This sounds unfortunate as
the above considerations about the difficulty of assessing sharp estimates for probabil-
ities are even more compelling for utilities, which are supposed to model intrinsically
qualitative objects such as preferences.3

We extend to the interval-valued case the formalism of IDs by keeping the same
sensitivity-analysis interpretation of credal networks. Such a generalized ID is there-
fore equivalent to a collection of classical (i.e., “precise”) IDs whose parameters are
consistent with the interval constraints. In this framework also the expected utility
of a policy becomes interval-valued. A decision criterion to detect the optimal deci-
sion when comparing intervals is therefore needed. We adopt a conservative approach,
called interval dominance in the imprecise-probability jargon [27], which rejects all
the decisions leading to certainly sub-optimal strategies.

The standard approaches to IDs evaluation, namely variable elimination [18, 31]
and arc reversal [25], are generalized in order to cope with the interval-valued case.
The extension to intervals does not increase the computational complexity which re-
mains the same as with sharp parameters for both the algorithms. This is achieved at
the price of an outer approximation in the inferences, which is required to preserve the
interval-valued modeling. An experimental comparison against the arc reversal tech-

1The work of Zhou et al. [32] combining sharp probabilities with interval-valued utilities is just a trivial
special case of the general framework we present here.

2Sensitivity analysis does not require the specification of more general classes of models, being only
focused on the results of the inferences. Thus, it should be regarded as a different topic, which, as a matter
of fact, received more attention (e.g., [22]).

3The possibilistic influence diagrams proposed in [14] can be regarded as a successfull attempt in the
same direction we explore. Yet, the possibilistic framework does not allow for interval-valued specifications,
thus lacking a direct sensitivity-analysis interpretation.
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nique proposed by Fertig and Breese in [13, 12, 6] (i.e., the only practical approach
proposed so far these models) shows a clear improvement in terms of both evaluation
time and accuracy.

The proposed algorithms can be also used for practical sensitivity analysis in (stan-
dard) IDs. By replacing the sharp values of some parameters with intervals, we can
decide whether or not the original optimal strategy is robust with respect to a pertur-
bation consistent with the intervals. The maximal level of perturbation leaving the
strategy unchanged can be therefore regarded as a robustness descriptor. This allows
to identify the more critical parameters of the model and, for instance, deciding which
ones deserve a more careful elicitation.

The results originally presented in a conference version of this work [8] are pre-
sented here with more accurate descriptions and examples. This extended version also
includes novel material such as the arc reversal algorithm, an improved version of the
variable elimination algorithm, an empirical validation against the algorithm in [13],
and the application to sensitivity analysis of standard IDs.

The paper is organized as follows. Section 2 introduces the notation and some basic
concepts. Section 3 defines interval-valued potentials and the corresponding algebraic
structure. The algorithms to evaluate interval-valued IDs are in Section 4, while the
procedure for sensitivity analysis is in Section 5. The empirical analysis is presented
in Section 6. Finally, the conclusions of the paper are given in Section 7.

2. Basics

Let us first define the basic notation. We use upper-case letters for variables and
lower-case for their possible values. Given a variable X , x is an element of the domain
of X , which we denote as ΩX . Given a set of n variables X := {X1, . . . , Xn}, and
a multi-valued index J ⊆ [1, n], XJ is the joint variable including any Xi such that
i ∈ J . Thus, ΩXJ

= ×i∈JΩXi , where × is the Cartesian product. Given a second
index I , the notation xI ∼ xJ is used to express consistency, i.e., to denote the fact
that the two states have the same values on XI∩J . Chance variables are those whose
actual value might be unknown, decision variables are those whose actual value can be
set by a decision maker.

2.1. Influence Diagrams

Influence diagrams (IDs) [15] are a class of graphical models designed to formal-
ize sequential decision problems with uncertainty. Compared with decision trees [23],
IDs offer a compact encoding of the independence relations between variables, which
prevents an exponential growth in the problem representation.

An ID over a set of chance variables X and a set of decisions D is made of a qual-
itative and a quantitative part. The qualitative part is an acyclic directed graph G with
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three types of nodes. Chance nodes are depicted as circles and are in one-to-one cor-
respondence with the chance variables, i.e., those in X . Decision nodes are depicted
as squares and associated to decision variables, i.e., those in D. Utility nodes are de-
picted as diamonds and should be barren, i.e., they have no children. The terms node
and variable are used interchangeably for both chance and decision variables. Utility
nodes are not associated to variables. Yet, these nodes are jointly denoted as U . The
parents of an arbitrary node Y according to G are also called direct predecessors and
denoted ΠY . Similarly, the children of Y are called direct successors and denoted ΓX .

The quantitative part is made of a set of probability potentials (PPs) that represents
the uncertainty, and a set of utility potentials (UPs) that represents the user preferences.
A PP over two disjoint sets of variables XI and XJ , denoted as φ(XI |XJ), is a map
φ : ΩXI∪J → [0, 1] such that

∑
xI∈ΩXI

φ(xI |xJ) = 1 for each xJ ∈ ΩXJ
. Similarly,

a UP over XK , denoted as ψ(XK), is a map ψ : ΩXK
→ R. Notice that UPs are not

necessarily normalized. For each chance node, a PP over the corresponding variable
and its direct predecessors is defined, while, for each utility node, an UP over the
parents should be assessed. The complete definition of ID is as follows.

Definition 1 (influence diagram). An influence diagram is a tuple 〈G,X,D,U ,Φ,Ψ〉,
where G is an acyclic directed graph over X ∪D ∪U , while Φ = {φ(X|ΠX)}X∈X
and Ψ = {ψ(ΠU )}U∈U are collections of, respectively, PPs and UPs.

To model sequential decision problems with IDs two additional assumptions are
required. An ID is regular if the graph G contains at least a directed path connecting all
the decision nodes. Because of the acyclicity of G, this defines a complete topological
ordering over the decision variables. Without lack of generality, the indexes of the
decision nodes, say D := {D1, . . . , Dn}, can be assumed to reflect such order, i.e.,
D1 ≺ . . . ≺ Dn, with the symbol ≺ denoting topological precedence. We partition
the chance variables X in n + 1 sets denoted as {Ii}ni=0. For each i = 0, . . . , n − 1,
Ii includes the chance nodes directly preceding Di+1 but not Di. If a chance variable
is a direct predecessor of more than a decision node, it belongs to the set associated
to the decision variable with the smallest index. The remaining chance variables, i.e.,
those not having decision nodes among their direct successors, belong to In. This
forms a partition of X , i.e., ∪ni=0Ii = X and Ii ∩ Ij = ∅ for each i, j = 0, 1, . . . , n,
i 6= j. Overall, regular IDs are characterized by the following partial order of the
variables: I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In. It is easy to see that, apart from the
variables in In, any topological order extracted from G is consistent with the above
partial order. Such order reflects a temporal interpretation: the chance variables in Ii
are observed by the decision maker before decisionDi+1 is taken, and the ordering over
D reflects the order in which the different decisions are taken. According to the non-
forgetting assumption, previous decisions and observations are known at each decision.
Arcs included to satisfy this assumption are called non-forgetting arcs. Here we only
consider regular IDs and assume the non-forgetting arcs to be present. A classical ID
is considered here below.

Example 1 (the oil wildcatter [23, 26]). An oil wildcatter must decide whether or not
to drill. He/she is uncertain whether the amount of oil (O) in the place is empty (e), wet
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(w) or soaking (s). The wildcatter can make seismic tests (S) that will give a closed
reflection pattern (c) indicating much oil, an open pattern (o) indicating for some oil, or
a diffuse pattern (d) denoting almost no hope for oil. These two are chance variables,
while the decision variables are T [to test (t) or not (nt)] and D [to drill (d) or not
(nd)]. The utility nodes P and C describe respectively the profit possibly obtained
from the presence of oil and the cost of the tests. Figure 1 depicts the graph of an ID
modeling this problem. The graph is regular as decision T precedes decisionD. In this
case the partial order is complete being T ≺ S ≺ D ≺ O. The numerical values of
the potentials, reported below in a matrix form with the corresponding states depicted
in gray, are

φ(O) =

[ ].5 e
.3 w
.2 s

, ψ(T ) =

[ ]
-10 t

0 nt , ψ(O,D) =

d nd[ ]-70 0 e
50 0 w

200 0 s

,

φ(S|OT ) =

t nt
e w s e w s[ ].1 .3 .5 1

3
1
3

1
3 c

.3 .4 .4 1
3

1
3

1
3 o

.6 .3 .1 1
3

1
3

1
3 d

.

O
(oil)

S
(seismic)

T
(test)

D
(drill)

C
(cost)

P
(pay)

Figure 1: Graph of an ID modeling the oil wildcatter’s decision

2.2. IDs Evaluation (Definitions)

A policy for a decision variable Di is a mapping δDi : ΩΠDi
→ ΩDi associating

a state of Di (i.e., a decision) to its past observations and decisions. A strategy ∆ is a
collection of policies, one for each decision variable, i.e., ∆ := {δD1

, δD2
. . . , δDn

}.
Evaluating IDs consists in the identification of an optimal strategy ∆∗, which maxi-
mizes the expected value of the sum of the UPs. The (optimal) policies of an optimal
strategy and the maximum expected utility are defined as follows.
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Definition 2 (optimal policy and maximum expected utility [18]). Consider an ID as
in Definition 1 which is also regular and satisfies the non-forgetting assumption. Let
the temporal order be described as I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In. For each
i = 1, . . . , n, the optimal policy for decision Di is

δ∗Di
(I0, D1, . . . , Ii−1) := arg max

Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

∏
X∈X

φ(X|ΠX)
∑
U∈U

ψ(ΠU ) ,

(1)
and the maximum expected utility is

MEU :=
∑
I0

max
D1

· · ·max
Dn

∑
In

∏
X∈X

φ(X|ΠX)
∑
U∈U

ψ(ΠU ) , (2)

with (X,ΠX ,ΠU ) ∼ ({Di}ni=1, {Ij}nj=0) for each X ∈ X and U ∈ U.

Eq. (1) returns the value of Di maximizing the (unnormalized) expected value of the
sum of the UPs. At the moment of that decision, all the previous decisions have been
already taken and all the chance variables in the past observed. The maximization is
indeed achieved with respect toDi and the subsequent decisions, while the expectation
is computed with respect to the uncertainty about the chance variables in the future
of Di. The MEU in Eq. (2) can be regarded as the expected value of the sum of the
utilities when the decision maker takes his/her decisions on the basis of the optimal
policies in Eq. (1). These basic concepts are demonstrated in the following example.

Example 2 (wildcatter’s policy). In the oil wildcatter’s ID (Example 1), the optimal
policies as in Eq. (1) associated to decisions T and D are

δ∗D(S, T ) =

t nt[ ]d d c
d d o

nd d d

, δ∗T = [ t ] ,

while the maximum expected utility as in Eq. (2) is MEU = 22.5. Note that the optimal
policy for T has no arguments, since there are no variables in its past (T is the first
decision and I0 = ∅). Accordingly, doing the tests is always the best decision for T ,
while, regarding D, it is always better to drill apart from the case in which the test was
done and a diffusive pattern found.

2.3. IDs Evaluation (Algorithms)

Here we review two of the main algorithms for computing the optimal strategy ∆∗

and the maximum expected utility MEU in IDs, namely variable elimination (Section
2.3.1) and arc reversal (Section 2.3.2).

2.3.1. Variable Elimination
Variable elimination (VE) is a typical approach to inference in graphical models.

VE algorithms for IDs [18, 31] are commonly used to solve Eq. (2). Unlike VE for
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Bayesian networks, in regular IDs the elimination order is not arbitrary: it should be
the inverse of an order consistent with the partial order associated to the ID [20]. When
the last variable is eliminated, the algorithm returns a potential with no arguments (i.e.,
a single value) corresponding to the MEU as in Eq. (2). Every time a decision variable
is eliminated, the corresponding optimal policy is also obtained. Algorithm 1 depicts
the general scheme of VE for IDs.

Algorithm 1 VarElim - Variable elimination scheme
input: regular ID with temporal order {I0, D1, I1, . . . , Dn, In}

1: for k ← n to 0 do
2: while Ik 6= ∅ do
3: Select X ∈ Ik . Pick a chance variable to eliminate
4: (Φ,Ψ)← ElimVar(X,Φ,Ψ) . Chance variable elimination (Alg. 2)
5: Ik ← Ik\{X}
6: end while
7: if k > 0 then
8: (Φ,Ψ)← ElimVar(Dk,Φ,Ψ) . Decision variable elimination (Alg. 2)
9: end if

10: end for

While chance variables are removed by sum, as in Bayesian networks, decision
variables are instead eliminated by maximization. Algorithm 2 shows how to remove a
single variable, no matter whether chance or decision, from an ID. Let us clarify some
of the notation used to describe this procedure. The operator dom returns the variables
in the argument of a potential. Sums in line 4 and maxima in line 6 are two different
forms of marginalization (respectively for decision and chance variables), i.e., remov-
ing the variable from the argument of the potential. The division (line 4) is intended
element-wise. In the PP in line 6, Y can be eliminated by instantiating an arbitrary
value y ∈ ΩY : when removing a decision, usually there are not PPs containing and
if any, the decision is not affecting the values of such PP (any decision is d-separated
from its predecessors [18] and any successor has already been removed). When elim-
inating a decision variable, the maximization of the UP also gives the corresponding
optimal policy (line 7).

Finally, the implementation of the ⊗ operator to combine potentials is detailed in
the following statement. It is easy to check that these definitions are well-posed and
the operator is associative and commutative.

Definition 3 (combining potentials). The combination ψ⊗ψ′ of two UPs, say ψ(XI)
and ψ′(XJ), is a UP over XI∪J obtained by element-wise sums, i.e.,

(ψ ⊗ ψ′)(xI∪J) := ψ(xI) + ψ′(xJ) , (3)

for each xI∪J ∈ ΩXI∪J , with xI , xJ ∼ xI∪J . The combination φ ⊗ ψ of a PP
φ(XI |XJ) with a UP ψ(XK) is a UP over XL := XI∪J∪K defined by element-wise
products, i.e.,

(φ⊗ ψ)(xI∪J∪K) := φ(xI |xJ) · ψ(xK) , (4)
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Algorithm 2 ElimVar - Elimination of a single variable
input: Y (variable to remove), Φ,Ψ (sets of current potentials)

1: (ΦY ,ΨY )← ({φ ∈ Φ|Y ∈ dom(φ)}, {ψ ∈ Ψ|Y ∈ dom(ψ)}) . Select
2: (φY , ψY )← (⊗φ∈ΦY

φ,⊗ψ∈ΨY
ψ) . Combine

3: if Y ∈X then
4: (φ′Y , ψ

′
Y )← (

∑
Y φY ,

∑
Y φY ⊗ψY∑

Y φY
) . Remove by sum (chance vars)

5: else
6: (φ′Y , ψ

′
Y )← (φY=y,maxY ψY ) . Remove by max (decision vars)

7: δ∗Y ← arg maxY ψY . Optimal policy (as a byproduct)
8: end if
9: (Φ,Ψ)← (Φ\ΦY ∪ {φ′Y },Ψ\ΨY ∪ {ψ′Y }) . Update

10: return (Φ,Ψ)

for each xI∪J∪K ∈ ΩXI∪J∪K , with xI , xJ , xK ∼ xI∪J∪K . Finally, the combina-
tion φ ⊗ φ′ of two PPs, say φ(XI |XJ) and φ′(XK |XL), is a PP over XI∪K given
X(J∪L)\(I∪K) defined by element-wise products, i.e.,

(φ⊗ φ′)(xI∪K |x(J∪L)\(I∪K)) := φ(xI |xJ) · φ′(xK |xL) , (5)

for each xI∪K ∈ ΩXI∪K and x(J∪L)\(I∪K) ∈ ΩX(J∪L)\(I∪K)
, with xI , xJ , xK , xL ∼

xI∪K , x(J∪L)\(I∪K).

VE complexity is linear in the size of the largest potential generated during the
evaluation [21]. This corresponds to the combinations in line 4 of Algorithm 2. Sup-
pose we have an ID with n variables (chance or decision) with no more of d states,
then the complexity of VE for evaluating it is bounded by O(n · dw) where w is the
arity of the largest potential ever created during the evaluation. Note that, if the optimal
elimination order is followed, w corresponds to the treewidth of the graph [5, 24].

2.3.2. Arc Reversal
Arc reversal (AR) [25] is an evaluation algorithm for IDs alternative to VE. In AR

the orientation of an arc among two chance nodes can be reversed by Bayes rule. AR
is based on a simple observation: the elimination of a variable, no matter whether
chance or decision, having a utility node as unique direct successor involves only two
potentials, thus does not affect the overall inferential complexity. Such patterns can
be always created by properly changing some arc orientations. Algorithm 3 details
the AR scheme. The basic transformations required by AR are described here below.
The overall procedure is indeed demonstrated in Example 3. It is a trivial exercise to
check that these transformations map the original ID into an equivalent one (two IDs
are equivalent if they have the same expected utility and the same optimal policies for
the remaining decisions). AR copes with IDs with a single utility node. If this is not
the case, it is sufficient to apply the following transformation.

Transformation 1 (merging utilities). Given an ID with at least two utility nodes,
add a new utility node Ũ , which is a barren child of all the parents of the utility nodes,
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i.e., ΠŨ :=
⋃
U∈U ΠU . Define an UP associated to Ũ as ψ(πŨ ) :=

∑
U∈U ψ(πU ).

Finally, remove all the utility nodes different from Ũ and the corresponding UPs.

Transformation 2 (chance nodes removal). Assume that a chance node Y has the
utility node U as unique direct successor. Let XI denote the direct predecessors of Y ,
and XJ those of U others than Y . To eliminate Y replace the PP φ(Y |XI) and the UP
ψ(Y,XJ), with the UP ψ(XI∪J) :=

∑
y∈ΩY

ψ(y,XJ) · φ(y|XI). Finally, remove Y
from G and add new arcs connecting the nodes in XI with U .

Transformation 3 (decision nodes removal). Assume that a decision node Y has the
utility node U as unique direct successor. Let XI denote the direct predecessors of
Y . Assume that the direct predecessors of U others than Y , and denoted as XJ , are
also direct predecessors of Y . To eliminate Y , replace the UP ψ(Y,XJ) with the UP
ψ(XJ) := maxy∈ΩY

ψ(y,XJ). Finally, remove Y from G.

Transformation 4 (arc reversal). Assume that the chance nodes Y andX are directly
connected by an arc, but not by other directed paths. Let φ(Y |XI) and φ(X|Y,XJ) be
the relative PPs, which means that XI are the direct predecessors of Y and XJ those
of X others than Y . Change the orientation of the arc and add arcs from XI towards
X and from XJ towards Y . The new PP for X is φ(X|XI , XJ) :=

∑
y φ(y|XI) ·

φ(X|y,XJ). The PP for Y is such that φ(y|x,XI , XJ) ∝ φ(y|XI) · φ(x|Y,XJ) with
the proportionality constants obtained by normalization.

Example 3 (reversing the oil wildcatter’s arcs). Consider the ID in Example 1 with
the graph in Figure 1. We first apply Transformation 1 to merge the two utility nodes
C and P . The resulting equivalent ID with a single utility node is in Figure 2. Then we
reverse the arc from O to S by Transformation 4. As shown in Figure 3.a, this makes
the utility node P̃ the unique direct successor ofO. The PPs φ(O) and φ(S|T,O) have
been replaced by the new PPs φ′(O|S, T ) and φ′(S|T ). E.g.,

φ′(O = e|S = c, T = t) :=
φ(O = e)φ(S = c|O = e, T = t)∑

O∈e,w,s φ(O = o)φ(S = c|O = o, T = t)
. (6)

Transformation 2 can be therefore used to eliminate the chance node O. This corre-
sponds to replace the potentials φ(O|S, T ) and ψ(O,D) with the UP ψ(S, T,D) :=∑
o φ(o|S, T )ψ(o,D). In the resulting model (see Figure 3.b), Transformation 3 can

be used to remove D since the other direct predecessors of P̃ are also predecessors of
D. By similarly continuing we eliminate all the decision and chance nodes and end up
with the utility node only, whose constant UP corresponds to the MEU.

The above procedure can be easily extended to the general case. Algorithm 3 out-
lines the whole scheme. Compared to VE, the complexity of AR is not reduced because
of the additional arcs added when reversing the arcs. Unlike VE, each step of AR can be
regarded as a transformation of an ID in an equivalent one with fewer variables. It has
been shown empirically that the complexity of VE is never higher than the complexity
of AR [3, 7].

9



O
(oil)

S
(seismic)

T
(test)

D
(drill)

P̃
(pay+cost)

Figure 2: Merging the utility nodes in the oil wildcatter’s decision problem
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P̃
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(a) (b)

Figure 3: Reversal the O → S arc (left) and removal of node O (right)

Algorithm 3 ArcRev - Arc Reversal Scheme
1: merge utility nodes in U . Transformation 1
2: while ΠU 6= ∅ do
3: if ∃X ∈ X ∩ΠU : ΓX = { U} then
4: remove X . Transformation 2
5: else if ∃D ∈ D ∩ΠU : ΠU ⊂ ΠD ∪ {D} then
6: remove D . Transformation 3
7: remove barren nodes
8: else
9: find X ∈ X ∩ΠU : D ∩ ΓX = ∅

10: while X ∩ ΓX 6= ∅ do
11: find Y ∈ X ∩ΠX :6 ∃ other directed path from X to Y
12: replace arc X → Y with X ← Y . Transformation 4
13: end while
14: remove X
15: end if
16: end while
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3. Interval-Valued Potentials

In real applications of IDs, the values of the potentials should be elicited from
expert knowledge or learned from data. More realism in this quantification of the
parameters can be obtained by replacing the sharp estimates with intervals. Such gen-
eralization is formalized below.

3.1. Interval-Valued Utility and Probability Potentials
The notions of UP and PP in Section 2.1 can be extended to intervals as follows.

Definition 4 (interval utilities). An interval-valued utility potential (IUP) over XI is
a pair of UPs over XI . We use the compact notation ψ(XI) for an IUP over XI , ψ
and ψ are the two UPs involved in the specification and are called, respectively, the
lower and upper bounds of the IUP. The extension ψ

∗
(XI) of this IUP is the set of UPs

consistent with the bounds, i.e.,

ψ
∗
(XI) :=

{
ψ : ΩXI

→ R
∣∣ψ(xI) ≤ ψ(xI) ≤ ψ(xI),∀xI ∈ ΩXI

}
. (7)

The extension of an IUP ψ is non-empty if and only if ψ(xI) ≤ ψ(xI) ∀xI ∈ ΩXI
.

Definition 5 (interval probabilities). An interval-valued probability potential (IPP)
over XI given XJ is a pair of (in general not normalized) PPs over XI given XJ .
We denote such an IPP as φ(XI |XJ), where φ(XI |XJ) and φ(XI |XJ) are the two
(unnormalized) bounds. The extension φ

∗
(XI |XJ) of this IPP is the set of PPs consis-

tent with the bounds, i.e.,

φ
∗
(XI |XJ) :=

φ : ΩXI
× ΩXJ

→ R+
0

∣∣∣∣∣∣
∑
xI
φ(xI |xJ) = 1

φ(xI |xJ) ≤ φ(xI |xJ) ≤ φ(xI |xJ)
∀(xI , xJ) ∈ ΩXI

× ΩXJ

 .

(8)

Condition φ(xI |xJ) ≤ φ(xI |xJ) for each xI , xJ , together with
∑
xI
φ(xI |xJ) ≤

1 ≤
∑
xI
φ(xI |xJ), for each xJ ∈ ΩXJ

is necessary and sufficient for the extension of
the IPP to be non-empty. The additional condition φ(x′i) +

∑
xi 6=x′i

φ(xi) ≤ 1 and the
analogous expression for the lower instead of the upper bounds is called reachability
[10]. The meaning is that for each p ∈ [φ(xI |xJ), φ(xI |xJ)], there is at least a PP
φ ∈ φ∗ such that φ(xI |xJ) = p. Note also that an IPP with non-empty extension can
be always reduced to a reachable one by shrinking its bounds and this has no effect
on its extension. Given an IPP, we always check whether or not it is reachable and,
if not, we apply the shrinking. This operations will be iterated after any modification
of the IPPs. We call one-sided an IPP whose upper bound is constantly set equal to
one. The reachability constraint makes the upper bound of one-sided IPPs equal to
φ(xI |xJ) = 1 −

∑
x′I 6=xI

φ(xI |xJ). Being defined by linear constraints, both the ex-
tensions of an IUP and an IPP are convex sets of, respectively, UPs and PPs. Convex
sets of UPs and PPs which are not extensions of IUPs and IPPs can be also considered,
but this topic would be beyond the scope of this paper.
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Example 4. Consider the following interval-valued potentials:

φ(O) =

[ ]
[.475, .525]
[.285, .335]
[.190, .240]

, ψ(T ) =

[ ]
[−10,−5]

[−5, 5] , ψ(O,D) =

[ ]
[−75,−65] [−5, 5]

[45, 55] [−5, 5]
[195, 205] [−5, 5] ,

φ(S|O, T ) =

[ ]
[.095, .145] [.285, .335] [.475, .525] [.317, .367] [.317, .367] [.317, .367]
[.288, .335] [.380, .430] [.380, .430] [.317, .367] [.317, .367] [.317, .367]
[.570, .620] [.285, .335] [.095, .145] [.317, .367] [.317, .367] [.317, .367]

,

where the same variables and matrix notation as in Example 1 is used. It is a trivial
exercise to check that these potentials have non-empty extensions, the UPs and PPs in
Example 1 are included in these extensions, and the IPPs are reachable.

3.2. Operations with Interval-Valued Potentials

The combination operator ⊗ considered in Definition 3 for standard potentials can
be extended to intervals as follows.

Definition 6 (combining interval-valued potentials). The combinationψ ⊗ ψ′ of two

IUPs, say ψ(XI) and ψ
′
(XJ), is an IUP over XI∪J such that

ψ ⊗ ψ′(xI∪J) := ψ(xI) + ψ′(xJ) , (9)

for each xI∪J ∈ ΩXI∪J , with xI , xJ ∼ xI∪J ; and similarly for the upper bounds. The
combination φ⊗ ψ of an IPP φ(XI |XJ) with an IUP ψ(XK) is an IUP over XI∪J∪K
such that

φ⊗ ψ(xI∪J∪K) := φ(xI |xJ) · ψ(xK) , (10)

for each xI∪J∪K ∈ ΩXI∪J∪K , with xI , xJ , xK ∼ xI∪J∪K; if ψ(xK) < 0 the lower
bound of the combination is obtained by multiplying the lower bound of the IUP for
the upper bound of the IPP (and vice versa for the upper bound). Finally, the combina-
tion φ⊗ φ′ of two IPPs, say φ(XI |XJ) and φ

′
(XK |XL) is an IPP over XI∪K given

X(J∪L)\(I∪K) such that

φ⊗ φ′(xI∪K |x(J∪L)\(I∪K)) := φ(xI |xJ) · φ′(xK |xL) , (11)

for each xI∪K ∈ ΩXI∪K and x(J∪L)\(I∪K) ∈ ΩX(J∪L)\(I∪K)
, with xI , xJ , xK , xL ∼

xI∪K , x(J∪L)\(I∪K).

Example 5 (interval-valued potential combination). Consider the IPPs and IUPs in
Example 4 associated to the oil wildcatter’s ID. It is a straightforward exercise to check
that the following combined potentials

ψ(T,O,D) := ψ(T )⊗ ψ(O,D) ,

φ(S,O|T ) := φ(O)⊗ φ(S|O, T ) ,

ψ(S,O, T,D) := φ(S,O|T )⊗ ψ(O,D) ,
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where ⊗ is the operator introduced in Definition 6, are

ψ(T,O,D) =

t nt
d nd d nd[ ]

[−90,−70] [−20, 0] [−80,−60] [−10, 10] e
[30, 50] [−20, 0] [40, 60] [−10, 10] w

[180, 200] [−20, 0] [190, 210] [−10, 10] s

,

φ(S,O|T ) =
t nt

e w s e w s[ ]
[.045, .076] [.081, .112] [.090, .126] [.150, .192] [.090, .123] [.060, 0.088] c
[.135, .176] [.108, .144] [.072, .103] [.150, .192] [.090, .123] [.060, 0.088] o
[.271, .326] [.081, .112] [.018, .035] [.150, .192] [.090, .123] [.060, 0.088] d

,

ψ(S,O, T,D) =
t nt

d nd d nd



[−5.709,−2.933] [−.381, .381] [−14.437,−9.777] [−.962, .962] e
[3.655, 6.172] [−.561, .561] [4.061, 6.756] [−.614, .614] w c

[17.599, 25.83] [−.630, .630] [11.732, 18.040] [−.440, .440] s
[−13.191,−8.799] [−.879, .879] [−14.437,−9.777] [−.962, .962] e

[4.873, 7.923] [−.720, .720] [4.061, 6.756] [−.614, .614] w o
[14.079, 21.156] [−.516, .516] [11.732, 18.040] [−.440, .440] s

[−24.413,−17.599] [−1.627, 1.627] [−14.437,−9.777] [−.962, .962] e
[3.655, 6.172] [−.561, .561] [4.061, 6.756] [−.614, .614] wd
[3.520, 7.134] [−.174, .174] [11.732, 18.040] [−.440, .440] s

.

The above combination operator generalizes the combination of precise potentials
in Definition 3 by keeping the same commutative and associative properties. A deeper
characterization is provided by the following result, which provides a sensitivity-analysis
justification for the proposed generalization of the combination operator.

Proposition 1. Given two potentials (no matter whether IUPs or IPPs) ψ and φ, the
combination of the elements of their extensions is included in the extension of their
combination, i.e., {

ψ ⊗ φ
∣∣∣ψ ∈ ψ∗, φ ∈ φ∗} ⊆ ψ ⊗ φ∗ . (12)

The proof easily follows from the fact that potentials consistent with the bounds on
the right-hand side of Eqs. (9-11) cannot produce bounds not consistent with those on
the left-hand side. The other operations over sharp-valued potentials required by the
algorithms VE and AR (division, sum-marginalization and max-marginalization) can
also be generalized to intervals and similar characterizations provided.
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Definition 7 (dividing interval-valued potentials). The ratio between an IUP ψ(XI)

and an IPP φ(XJ) is an IUP ψ/φ over XI∪J such that, for each xI∪J ∈ ΩXI∪J ,

ψ/φ(xI∪J) := ψ(xI)/φ(xJ) , (13)

ψ/φ(xI∪J) := ψ(xI)/φ(xJ) , (14)

with xI , xJ ∼ xI∪J .

The ratio of two IPPs is analogously defined. With zero denominators, the result is set
to +∞ for positive numerators and −∞ for negative ones. When both numerator and
denominator are zero, we set 0

0 = 0.

Definition 8 (sum-marginalization). The sum-marginalization
∑
X ψ of an IUPψ(X,XI)

is an IUP over XI such that∑
X

ψ(xI) :=
∑
x∈ΩX

ψ(x, xI) , (15)

∑
X

ψ(xI) :=
∑
x∈ΩX

ψ(x, xI) , (16)

for each xI ∈ ΩXI
.

The sum-marginalization of an IPP is analogously defined.

Definition 9 (max-marginalization). The max-marginalization maxD ψ of an IUP
ψ(D,XI) is an IUP over XI such that

max
D

ψ(xI) := max
d∈ΩD

ψ(d, xI) , (17)

max
D

ψ(xI) := max
d∈ΩD

ψ(d, xI) , (18)

for each xI ∈ ΩXI
.

The max-marginalization of an IPP is analogously defined. Envelope theorems anal-
ogous to that in Proposition 1 can be proved for all the operators defined in this section.

Example 6 (marginalization and division). Consider the interval-valued potentials
ψ(S,O, T,D) and φ(S,O|T ) obtained in Example 5. By sum-marginalizing out the
variable O, we obtain

ψ(S, T,D) =
∑
O ψ(S,O, T,D) =

t nt
d nd d nd[ ]

[15.544, 29.069] [−1.572, 1.572] [1.356, 15.019] [−2.017, 2.017] c
[5.762, 20.279] [−2.116, 2.116] [1.356, 15.019] [−2.017, 2.017] o

[−17.238,−4.292] [−2.363, 2.363] [1.356, 15.019] [−2.017, 2.017] d

,
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φ(S|T ) =
∑
O

φ(S,O|T ) =

t nt[ ]
[0.217, 0.314] [0.301, 0.403] c
[0.316, 0.423] [0.301, 0.403] o
[0.37, 0.473] [0.301, 0.403] d

.

The division of the IUP and IPP previously obtained gives the IUP

ψ
2
(S, T,D) =

ψ(S,T,D)

φ(S|T )
=

t nt
d nd d nd[ ][49.45, 134.207] [−7.256, 7.256] [3.363, 49.924] [−6.704, 6.704] c

[13.617, 64.201] [−6.698, 6.698] [3.363, 49.924] [−6.704, 6.704] o
[−46.585,−9.084] [−6.385, 6.385] [3.363, 49.924] [−6.704, 6.704] d

,

Finally, the max-marginalization of D from ψ
2
(S, T,D) is

ψ(S, T ) = max
D

ψ
2
(S, T,D) =

t nt[ ]
[49.45, 134.207] [3.363, 49.924] c
[13.617, 64.201] [3.363, 49.924] o
[−6.385, 6.385] [3.363, 49.924] d

.

4. Interval-Valued Influence Diagrams

IDs can be extended to intervals by replacing the PPs and UPs in Definition 1 with
an equal number of IPPs and IUPs defined over the same domains. A model of this kind
is called an interval-valued influence diagram (IID). As an example, the interval-valued
potentials in Example 4 can be used to transform into an IID the ID in Example 1.

IIDs offer a direct sensitivity analysis interpretation. An IID can be regarded as a
collection of so-called consistent IDs, all with the same graph and set of variables, with
PPs and UPs taking their values from the extensions of the IPPs and IUPs of the IID.
IID evaluation is therefore intended as the calculation of the interval spanned by the
MEU values of the consistent IDs. We similarly define the optimal policies of an IID
as the union of those optimal, in the sense of Eq. (1), for at least a consistent ID.

Both the VE and AR schemes can be adopted for IIDs evaluation by replacing the
operations over sharp potentials with the analogous operations for interval-valued po-
tentials defined in Section 3.2. We show that this approach might produce unnecessarily
large outer approximations. To avoid that, we propose a sophistication of these algo-
rithms based on linear programming (Section 4.1 for VE and Section 4.3 for AR) as
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well as an alternative VE which gives faster but less accurate inferences (Section 4.2).
The latter approach gives an outer approximation analogous to the generalization of
the AR algorithm proposed by Fertig and Breese [13, 12, 6].

4.1. Variable Elimination in IIDs by Linear Programming

Consider the VE scheme outlined by Algorithm 1. The procedure to eliminate a
variable, detailed by Algorithm 2, is based on two sequential steps: first the potentials
including the variable to eliminate in their arguments are combined (line 2), then the
elimination is performed on the combined potential (lines 4 or 6). When coping with
IIDs, we perform the last combination together with the elimination. This corresponds
to a linear program, that avoids unnecessary additional approximations.

4.1.1. Chance Variables Elimination from IPPs
Because of Definition 1, only one of the PPs to be combined in line 2 of Algorithm 2

has Y on the left-hand side of its argument. The same holds with the IPPs of an IID.
When eliminating a chance variable from the IPPs of an IID, we proceed as follows.
First we combine with the operator in Definition 6 all the IPPs apart from the one
having Y on the left. The corresponding IPP is combined indeed with the only IPP
having Y on the left-hand side and, simultaneously, the variable is sum-marginalized
(first term in line 4) as described by Definition 8. The procedure is detailed here below.

Definition 10 (eliminating chance variables from IPPs). Consider the elimination of
the chance variable Y during VE. Let φ(XI |XJ , Y ) denote the IPP obtained by com-
bining all the IPPs with Y on the right-hand side, and φ(Y,XK |XL) the only IPP with
Y on the left. The elimination of Y from the combination of these two IPPs generates
an IPP φ(XK , XI |XL, XJ). For each xI∪K ∈ ΩXI∪K and xL∪J ∈ ΩXL∪J , an outer
approximation of the lower bound φ(xK∪I |xL∪J) is the solution of the following task:

minimize
∑
y∈ΩY

φ(xI |xJ , y) · φ(y, xK |xL) ,

subject to φ(xI |xJ , y) ≤ φ(xI |xJ , y) ≤ φ(xI |xJ , y) ,

φ(y, xK |xL) ≤ φ(y, xK |xL) ≤ φ(y, xK |xL),∀y ∈ ΩY .

The optimization variables {φ(xI |xJ , y)}y∈ΩY
are free to vary one independently of

the other. Each one of these variables is in a different term of the objective function.
Thus, we can easily minimize with respect to these variables and replace φ(xI |xJ , y)
with the lower bound φ(xI |xJ , y). This reduces the task to a linear program over the
optimization variables {φ(y, xK |xL)}y∈ΩY

. Yet, it should be noticed that the opti-
mization variables {φ(y, xK |xL)}y∈ΩY

are not only required to satisfy the separate
constraints reported in the above task, but also the normalization constraint of the PPs
consistent with the IPP φ(y, xK |xL). These are constraints among the different tasks
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corresponding to the different values of xK . By considering the reachability constraints
for φ(XK |XL) :=

∑
Y φ(XK , Y |L) (see Definition 8), we have

1−
∑

x′K 6=xK ,y

φ(y, x′K |xL) ≤
∑
y

φ(y, xK |xL) ≤ 1−
∑

x′K 6=xK ,y

φ(y, x′K |xL) . (19)

Note that if XK = ∅ the constraint in Eq. (19) degenerates in the trivial normalization
of the potential and becomes useless.

Example 7. Consider the elimination of the chance variableO from the IID associated
to the graph in Figure 1 with the IPPs and IUPs as in Example 4. This consists in
the combination φ(S,O|T ) := φ(O) ⊗ φ(S|O, T ), and then the sum-marginalization
φ(S|T ) :=

∑
o φ(S, o|T ). To show how this works in practice, let us compute the

upper bound φ(S = c|T = t). The corresponding linear program is:

maximize .145 · φ(e) + .335 · φ(w) + .525 · φ(s) ,

subject to .475 ≤ φ(e) ≤ .525 ,

.285 ≤ φ(w) ≤ .335 ,

.190 ≤ φ(s) ≤ .240 ,

φ(e) + φ(w) + φ(s) = 1 .

The objective function is maximized when φ(e) = .475, φ(w) = .285 and φ(s) = .240,
which gives φ(c|t) ' .290. By iterating this procedure for all the values of S and T
and for the lower bounds too, the following IPP is obtained:

φ(S|T ) =

t nt[ ]
[.221, .290] [.317, .367] c
[.330, .385] [.317, .367] o
[.375, .444] [.317, .367] d

It is worth noticing that not including the additional constraints in Eq. (19) would have
produced larger intervals.

4.1.2. Chance Variables Elimination from IUPs
Let us consider here how the second term of line 4 of Algorithm 2, i.e., the elim-

ination of a chance variable Y from the utility potentials, can be achieved with IIDs.
We first combine all the IUPs including Y in their arguments as in Definition 6. For
the IPPs, we proceed as in the previous section by first combining all the IPPs with
Y on the right-hand side. The remaining combinations and the division are performed
simultaneously as described in the following definition.

Definition 11 (eliminating chance variables from IUPs). Let φ(XI |XJ , Y ) be the IPP
obtained by combining all the IPP with Y on the right-hand side, φ(Y,XK |XL) be
the only IPP with Y on the left-hand side and ψ(Y,XM ) the combination of all the
IUPs with Y in the argument. The elimination of a chance variable Y from the
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combination of these potentials produces a new IPP ψ(XI , XJ , XK , XL, XM ). For
each xI∪J∪K∪L∪M ∈ ΩXI∪J∪K∪L∪M , an outer approximation of the lower bound
ψ(xI∪J∪K∪L∪M ) is the solution of the task

minimize

∑
y∈ΩY

φ(xI |xJ , y) · φ(y, xK |xL) · ψ(y, xM )∑
y∈ΩY

φ(xI |xJ , y) · φ(y, xK |xL)
,

subject to φ(xI |xJ , y) ≤ φ(xI |xJ , y) ≤ φ(xI |xJ , y) ,

φ(y, xK |xL) ≤ φ(y, xK |xL) ≤ φ(y, xK |xL) ,

ψ(y, xM ) ≤ ψ(y, xM ) ≤ ψ(y, xM ) .

The task has a linearly constrained cubic fractional objective function. The minimiza-
tion with respect to the optimization variables associated to an IUP can be trivially
achieved by setting ψ(y, xM ) = ψ(y, xM ). Unlike the task in Definition 10, the opti-
mization with respect to the optimization variables {φ(xI |xJ , y)} is not trivial as the
variables appear both in the numerator and in the denominator of the objective func-
tion. Nevertheless we can regard the product φ(y, xK |xL) · φ(xI |xJ , y) as a single
optimization variable subject to

φ(y, xK |xL) · φ(xI |xJ , y) ≤ φ(y, xK |xL) · φ(xI |xJ , y) ≤ φ(y, xK |xL)φ(xI |xJ , y) .
(20)

In this way the task becomes a linear-fractional program which can be reduced to a
linear program using the classical Charnes-Cooper transformation. This introduces
an outer approximation, which can be partially mitigated by additional reachability
constraints as in the previous section. In this case the constraints are

1−
∑

{x′K ,x′I}6={xK ,xI},y

φ(y, x′K |xL) · φ(xI |, xJ , y) ≤
∑
y

φ(y, xK |xL) · φ(xI |xJ , y)

≤ 1−
∑

{x′K ,x′I}6={xK ,xI},y

φ(y, x′K |xL) · φ(x′I |xJ , y) .

(21)
As in the previous section, if XK = XI = ∅ the constraint becomes ineffective

and the problem becomes linear instead of linear-fractional).

Example 8. Consider the VE scheme applied to the oil wildcutter’s IID. To remove the
chance variable O from the IUPs, we should consider the IPPs φ(O) and φ(S|O, T )

and the IUP ψ(O,D). A new IUP ψ(S, T,D) is obtained. The upper bound ψ(e, t, d)
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requires the solution of the fractional task

maximize
−65 · φ(e) · φ(c|e, t) + 55 · φ(w) · φ(c|w, t) + 205 · φ(s) · φ(c|s, t)

φ(e) · φ(c|e, t) + φ(w) · φ(c|w, t) + φ(s) · φ(c|s, t)
,

subject to .475 · .095 ≤ φ(e) · φ(c|e, t) ≤ .525 · .145 ,

.285 · .285 ≤ φ(w) · φ(c|w, t) ≤ .335 · .335 ,

.190 · .475 ≤ φ(s) · φ(c|s, t) ≤ .240 · .525 ,

.217 ≤ φ(e) · φ(c|e, t) + φ(w) · φ(c|w, t) + φ(s) · φ(c|s, t) ≤ .314 .

The maximum is 108.44 which is achieved when the first two variables takes their
minimum value and the third its maximum. By solving similar tasks for each joint state
in ΩS × ΩT × ΩD, we obtain the IUP

ψ(S, T,D) =

(t,d) (t,nd) (nt,d) (nt,nd)[ ]
[60.8, 108.44] [−5.0, 5.0] [3.96, 41.57] [−5.0, 5.0] c
[16.17, 53.0] [−5.0, 5.0] [3.96, 41.57] [−5.0, 5.0] o

[−40.58,−10.27] [−5.0, 5.0] [3.96, 41.57] [−5.0, 5.0] d
.

In this particular case, as .475 · .095 + .285 · .285 + .19 · .475 ' .217, not including
the additional constraints in Eq. (21) does not make the result less accurate.

4.1.3. Decision Variables Elimination
Here we discuss how to extend the operations in lines 6 and 7 of Algorithm 2 to

IIDs. The arg max operation is intrinsically related to the fact that a UP has sharp val-
ues. To decide the optimal options when comparing intervals, we adopt a conservative
approach, called interval dominance in the imprecise-probability jargon [27], which
rejects all the decisions leading to certainly sub-optimal strategies. The procedure is
described here below.

Definition 12 (interval optimality). Let ψ be an IUP over Y ∪ XI . An element y ∈
ΩY is interval-optimal given xI ∈ ΩXI

if there is no y′ ∈ ΩY \ {y} such that
ψ(y′, xI) > ψ(y, xI).

Let D be a decision variable to be eliminated from ψ(D,XI) during the VE (if there
are multiple potentials they are combined using Definition 6). To detect the optimal
policy δ∗D(XI) we compute the interval-optimal states of D given each xI ∈ ΩXI

.
This corresponds to a so-called credal policy allowing for indecision between two or
more possible options. Finally the maximization of the IUP giving as result a new
IUP ψ(XI) is done as explained in Definition 9, i.e., by acting separately on the two
bounds. Note that the elimination of a decision does not involve any computation over
IPPs.

Example 9. In the oil wildcatter’s IID, the removal of the decision D involves the IUP
ψ(S, T,D) obtained in Example 8. The resulting IUP and the corresponding optimal
policy are

ψ(S, T ) =

t nt[ ][60.8, 108.44] [3.96, 41.57] c
[16.17, 53.0] [3.96, 41.57] o
[−5.0, 5.0] [3.96, 41.58] d

, δ∗D(S, T ) =

t nt[ ]{d} {d, nd} c
{d} {d, nd} o
{nd} {d, nd} d

.
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Note that for some configurations, the interval resulting from the maximization corre-
sponds with only one of the alternatives given as optimal.

4.2. A Faster Outer Approximation

In this section we propose an alternative approach to the generalization of VE to
IIDs, which does not require any linear program to be solved. This corresponds to a
heuristic approach to the solution of those optimizations, that introduces an additional
outer approximation. The only difference with respect to the VE described in the pre-
vious section is the chance variable elimination from IUPs for which we propose a
procedure different from that in Definition 11. Suppose that we aim to remove a vari-
able Y from an IPP φ(Y,XI |XJ) and an ψ(Y, xK). The elimination of Y generates a
new IUPs ψ(XI∪J∪K) such that, for each xI∪J∪K ∈ ΩXI∪J∪K ,

ψ(xI∪J∪K) :=
∑
y∈ΩY

φ(y, xI |xJ)

φ(y, xI |xJ) +
∑
y′ 6=y φ(y′, xI |xJ)

· ψ(y, xK) , (22)

ψ(xI∪J∪K) =
∑
y∈ΩY

φ(y, xI |xJ)

φ(y, xI |xJ) +
∑
y′ 6=y φ(y′, xI |xJ)

· ψ(y, xK) . (23)

If there is more than an IPP with Y (either on the left or on right), all the IPPs are
combined using Definition 6. Compared to what is done by Definition 11, the above
considered potential provides an outer approximation based on the one-sided potentials
defined in Section 3. An example is shown here below.

Example 10. The removal of the chance variable O (from the IUPs) involves the IPPs
φ(O) and φ(S|O, T ) and the IUP ψ(O,D). A new IUP ψ(S, T,D) is obtained. E.g.,
according to Eq. (23), ψ(c, t, d) = 107.302, which corresponds to

.525 · .145 · (−65)

.525 · .145 + .285 · .285 + .19 · .475
+

.335 · .335 · 55

.475 · .095 + .335 · .335 + .19 · .475
+

.24 · .525 · 205

.475 · .095 + .285 · .285 + .24 · .525
.

By similarly proceeding for all the joint states in ΩS × ΩT × ΩD, we obtain the IUP
shown here below. Note that the intervals in Example 8 are included in those of the
current IUP.

ψ(S, T,D) =

(t,d) (t,nd) (nt,d) (nt,nd)[ ]
[64.124, 107.302] [−3.849, 6.3] [10.971, 38.662] [−4.1, 5.988] c

[21.95, 51.444] [−4.088, 6.003] [10.971, 38.662] [−4.1, 5.988] o
[−32.605,−15.972] [−4.358, 5.681] [10.971, 38.662] [−4.1, 5.988] d

4.3. Arc Reversal in IIDs by Linear Programming

The AR scheme outlined in Algorithm 3 evaluates IDs by performing three basic
operations: elimination of chance (Transformation 2) and decision (Transformation 3)
variables and arc reversal (Transformation 4). The first operation is just a particular
case of the chance variable elimination from IUPs explained in Section 4.1.2. Yet, in
AR, the removal of a chance variable Y always involves an IPP φ(Y |XI) such that
Y is the only variable on the left-hand side and an IUP ψ(Y,XJ). Because of the
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normalization constraint,
∑
Y φ(Y |XJ) is a constant potential always equal to one and

the removal corresponds to a simple linear program without fractional terms. Similarly,
the second operation consists in removing a decision variable D from an IUP, say
ψ(D,XI), and deciding the optimal policy δ∗Di

. This is done exactly in the same way
as for the VE algorithm (see Section 4.1.3). Finally, to reverse arcs, we generalize
Transformation 4 to intervals as follows.

Transformation 5 (interval arc reversal). Assume that the chance nodes Y andX of
an IID are directly connected by an arc, but not by other directed paths. Let φ(Y |XI)

and φ(X|Y,XJ) be the relative PPs, which means that XI are the direct predeces-
sors of Y and XJ those of X others than Y . Change the orientation of the arc and
add arcs from XI towards X and from XJ towards Y . Then replace the original
IPPs with φ(X|XI , XJ) and φ(Y |X,XI , XJ), where the first IPP is obtained by sum-
marginalization and the second is such that φ(y|x, xI , xJ) is the minimum of

φ(y|xI) · φ(x|y, xJ)∑
y′∈ΩY

φ(y′|xI) · φ(x|y′, xJ)
, (24)

with respect to the interval constraints induced by the two original IPPs, for each
x ∈ ΩX , y ∈ ΩY , and xI∪J ∈ ΩXI∪J .

To solve the above optimization, we can use the same optimization strategy con-
sidered by Zaffalon in his naive credal classifier [29]. Accordingly, we divide the
denominator by the numerator and rewrite Eq. (24) as1 +

∑
y′ 6=y

φ(y′|xI) · φ(x|y′, xJ)

φ(y|xI) · φ(x|y, xJ)

−1

. (25)

Then, as f(t) = [1 + t]−1 is a monotone decreasing function of t ∈ R, we reduce the
minimization of the objective function in Eq. (24) or Eq. (25), to the maximization of∑

y′ 6=y

φ(y′|xI) · φ(x|y′, xJ)

φ(y|xI) · φ(x|y, xJ)
. (26)

As there are no constraints over the optimization variables {φ(x|y, xJ)}y∈ΩY
we per-

form the optimization with respect to these variable and obtain the objective function

∑
y′ 6=y

φ(y′|xI) · φ(x|y′, xJ)

φ(y|xI) · φ(x|y, xJ)
, (27)

which is a linearly constrained linear-fractional objective function. The task can be
therefore reduced to a linear program.

Example 11. The reversal of the arc from O to S involves the IPPs φ(S|O, T ) and
φ(O). The resulting IPPs are φ(S|T ) and φ(O|S, T ). Computing the upper bound
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φ(e|c, t) of the IPP attached to O corresponds to the following linear program

minimize
φ(w) · .285

φ(e) · .145
+
φ(s) · .475

φ(e) · .145
,

subject to .475 ≤ φ(e) ≤ .525 ,

.285 ≤ φ(w) ≤ .335 ,

.19 ≤ φ(s) ≤ .24 ,

φ(e) + φ(w) + φ(s) = 1 .

The minimum value of the previous function is 2.2525, and hence

φ(e|c, t) =
1

1 + 2.2525
' .307 .

By solving similar linear programs for each bound and state of ΩO × ΩS × ΩT , we
obtain the IPP

ψ(S, T,D) =

(e,t) (e,nt) (w,t) (w,nt) (s,t) (s,nt)[ ]
[0.169, 0.307] [0.439, 0.561] [0.375, 0.494] [0.439, 0.561] [0.66, 0.766] [0.439, 0.561] c
[0.294, 0.453] [0.256, 0.368] [0.292, 0.41] [0.256, 0.368] [0.187, 0.28] [0.256, 0.368] o
[0.333, 0.499] [0.168, 0.268] [0.192, 0.298] [0.168, 0.268] [0.041, 0.09] [0.168, 0.268] d

.

The upper bound φ(c|t) of the IPP attached to the final parent is the solution of a
linear program with the same constraints as in the previous optimization and objective
function to be maximized: φ(e) · .145 + φ(w) · .335 + φ(s) · .525. This function is
maximized for φ(e) = .475, φ(w) = .285 and φ(s) = .24. Thus, φ(c|t) = .29. If
similar programs are solved for each bound and state of ΩS × ΩT , the following IPP
is obtained

φ(S|T ) =

c o d[ ]
[.221, .290] [.330, .385] [.375, .449] t
[.317, .367] [.317, .367] [.317, .367] nt .

4.4. Complexity Analysis

The asymptotic complexity of the algorithms proposed in this section for IIDs eval-
uation is just the same as that of their IDs counterparts. Roughly speaking, with inter-
vals, we perform the double of the number of arithmetic operations required with sharp
values. The time required to run the linear programs is polynomial in the number of
variables and constraints, which in turn depends on the arity of the local potentials
involved during the elimination.

5. Sensitivity Analysis

The algorithms for IIDs evaluation developed in Section 4 can be used for practi-
cal sensitivity analysis in standard IDs. The sharp-valued potentials of an ID can be
replaced by interval-valued potentials whose extensions include the original potentials
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(e.g., as the extensions of the interval-valued potentials in Example 4 contain the po-
tentials in Example 1). These sets of potentials are intended to describe the possible
effects of a perturbation of the sharp values of the parameters. In particular we want to
parametrize the level of perturbation as described in the following definition.

Definition 13 (nested perturbations). Given a potential ψ, no matter whether PP or
UP, a parametrized nested perturbation of ψ is denoted as ψ

ε
. For each ε ≥ 0, ψ

ε
is an

interval-valued potential. We require that: (i) ε ≤ ε′ ⇒ ψ
∗
ε
⊆ ψ∗

ε′
; and (ii) ψ

∗
ε=0

= ψ.

Let us describe some practical ways to implement nested perturbations as in Def-
inition 13. For UPs, we perform a rectangular perturbation symmetrical with respect
to the original sharp values. In other words, if ψ(XI) is an UP over the set of variables
XI , then ψ

ε
(XI) is an IPP such that, for each xI ∈ ΩXI

,

ψ
ε
(xI) := ψ(xI)− ε , (28)

ψε(xI) := ψ(xI) + ε . (29)

Rectangular perturbations cannot be applied to PPs, because of the normalization and
nonnegativity constraints. We consider instead nested perturbations in the form of ε-
contaminations. Given an (unconditional) PP φ over XI , the perturbed IPP φ

ε
is such

that, for each xI ∈ ΩXI
,

φ
ε
(xI) := (1− ε) · φ(xI) , (30)

φε(xI) := (1− ε) · φ(xI) + ε . (31)

Such perturbation is only defined for 0 ≤ ε ≤ 1 and, for ε = 1 the extension of the PP
coincide with the so-called vacuous set, including any possible PP specification over
XI . We can similarly perturb a conditional PP φ(XI |XJ), by applying the above pro-
cedure for each xJ ∈ ΩXJ

.

Finally, let us introduce the notion of critical level of perturbation ε∗. We define
ε∗ as the maximum value of ε such that all the optimal policies of the corresponding
IID (obtained according to Definition 12) return single decisions. The value of ε∗

can be obtained with a bracketing over the parameter ε by running the IID evaluation
algorithms described in Section 4 for different perturbation levels. Alternatively, we
can also characterize the robustness of the model by computing the failure level of
perturbation ε∗∗, which is intended as the minimum value of ε such that all the optimal
policies of the corresponding IID are vacuous, i.e., all the decisions are returned. The
perturbation can be simultaneously applied to all the potentials in the IID or restricted
to a specific IPPs or IUPs. In the latter case it is possible to determine which one of the
potentials of an ID has a higher impact on the MEU. This gives important information
about the parameters deserving a more careful elicitation. A demonstrative example is
reported here below.

Example 12 (sensitivity analysis of the oil wildcatter’s problem). Consider the ID
in Example 1. To evaluate the corresponding IID obtained by perturbation of this
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model the VE algorithm with linear programs is considered. We perturb the PPs as-
sociated to S (Seismic) and to O (Oil), i.e. φ(S|O, T ) and φ(O). Figure 4 depicts
the size of the interval-valued MEU for increasing level of perturbation ε of these
two potentials. The result is clear: perturbing φ(S|O, T ) has a stronger effect than
perturbing φ(O). Accordingly, we might conclude that the PP of S deserves a more
careful quantification than that of O. Similar results are obtained by computing the
critical perturbation levels (ε∗ = .0082 for S and ε∗ = .0089 for O) and the failure
perturbation levels (ε∗∗ = .3749 for S and ε∗∗ = .7499 for O). Similar values and
conclusions are obtained with the AR algorithm.

Figure 4: Size of the interval-valued MEU as a function of the perturbation level ε

6. Empirical Validation

For an empirical validation of the VE and AR algorithm for IIDs proposed in Sec-
tion 4, we consider a benchmark of nine IDs modeling real decision tasks. Table 1
details the number of nodes of each type for these models. These IDs are transformed
in IIDs by a perturbation of the original parameters based on the procedure described
in Section 5. Besides the three algorithms proposed in Section 4, we also consider the
generalization of the AR to IIDs as proposed by Fertig and Breese [13]. We denote as
VElp our VE scheme based on linear programming, as VEouter the faster version pro-
posed in Section 4.2, as ARlp our AR scheme (Section 4.3), and as ARfb the algorithm
of Fertig and Breese.

Figure 5 shows the running times and the relative durations when compared with
those of the precise counterparts (VE or AR for IDs). As expected, the two simplest
approaches (ARfb and VEouter) roughly take the double of the time required by the
precise evaluations (both upper and lower bounds are computed). Methods using linear
programs (ARlp and VElp) are slower due to the time required by the linear solver. In
particular, the evaluation might be demanding if there are chance variables with many
states, this being the case of NHL (which has a chance variable with twelve states).
If we compare the interval versions of AR against VE, we see that the differences are
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Name of the ID |X| |D| |U|
Appendicitis 4 1 1
Thinkbox 5 2 4
Oil 2 2 2
Oil Split Costs 2 2 3
NHL 17 3 1
Jaundice 21 2 1
Threat of Entry 3 9 1
Comp. Assym 3 5 1
Chest Clinic 8 2 2

Table 1: Number of chance, decision and utility nodes for the benchmark IIDs

typically small for small ID/IIDs, while with large models such as NHL or Jaundice AR
might be very slow. In fact the reversal of and arc might introduce very large potentials,
this being a very well-known issue even with standard IDs. All these algorithms have
been implemented in Java.4

Figure 5: Absolute (y-axis) and relative (numbers over the bars) running times for the IIDs in Table 1

We also analyze the size of the interval-valued MEU as a function of the size of the
intervals in the initial potentials (parametrized by the perturbation level ε). The results
obtained with precise utilities are depicted in Figure 6. As expected, the results based

4All the software material used for the experiments presented in this section is freely available at the
address http://leo.ugr.es/rcabanas/intervalids/ .
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Figure 6: Size of interval-valued MEU as a function of the perturbation level ε of the IPPs

on the linear programming (ARlp and VElp) are the most informative ones for all the
IIDs. ARfb is much less accurate with Comp. Assym. and Threat of Entry. This might
be due to the high number of decisions: a weakness of ARfb is that the maximization
of an IUP is done by taking the highest upper bounds and the lowest upper bounds
(instead of the highest lower bounds). VEouter is also generally inaccurate and should
be regarded as the algorithm of choice only if very severe constraints are posed on the
running time. Similar results, with a sharp specification of the IPPs and intervals only
in the IUPs are reported in Figure 7. The two VE methods, which differs only in the
treatment of the IPPs, produce the same results. In general, when only utilities are
imprecise ARlp offers the best results. Finally, by comparing the y-scales in Figures 6
and 7, it can be observed that the imprecision in the IPPs seems to have a stronger
effect than that in the IUPs on the size of the interval MEU.

7. Conclusions and Future Work

We have extended the ID formalism to support an interval-valued specification of
the potentials. The corresponding models, called IIDs, have a direct sensitivity-analysis
interpretation: an IID is equivalent to a collection of precise IDs whose potentials are
consistent with the constraints induced by the intervals. Consequently, the set-valued
(so-called credal) optimal policies of an IID include the single-valued optimal poli-
cies of the consistent IDs, as well as the interval-valued MEU of an IID contains all
the MEU of the consistent IDs. Moreover, we extended to IIDs the classical variable
elimination and arc reversal evaluation schemes for IDs. These two extensions are
achieved by local optimization tasks, reduced to linear programs. For VE, a faster
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Figure 7: Size of interval-valued MEU as a function of the perturbation level ε of the IUPs

but less accurate procedure, that does not require linear programming, is also pro-
posed. The latter approach introduces an additional outer approximation similar to that
characterizing the generalization of the AR algorithm proposed by Fertig and Breese
[13, 12, 6]. All these algorithms have the same asymptotic complexities of their classi-
cal, sharp-valued, counterparts. The empirical analysis showed that the approximations
we introduce to keep the same complexity as with IDs did not compromise the informa-
tiveness of the inferences. In particular, the new methods based on linear programming
are clearly more accurate that the algorithm of Fertig and Breese. Finally, we also
proposed a possible application of IIDs to practical sensitivity analysis in precise IDs.
Computing the maximal level of perturbation, no matter whether local or global, might
allow to decide which are the potential/variables deserving a more careful elicitation
process.

As a future work we intend to extend this formalism to more general imprecise
frameworks, e.g., credal sets represented by extreme points or generic linear con-
straints. This should affect the computational complexity of evaluation process, thus
making necessary the development of specific approximate algorithms. We also intend
to apply some ideas proposed in a recent paper [30] about the relations between (sets
of) probabilities and (sets of) utilities, to reduce inference in IIDs to inference in credal
networks [1, 2]. We also intend to extensively test the procedure we proposed for sen-
sitivity analysis in practical IDs and compare it against the methods proposed so far
with the same goal.
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