

InferPy: Probabilistic modeling with Tensorflow made easy

Rafael Cabañas, Antonio Salmerón, Andrés R. Masegosa

Published in:
Knowledge-Based Systems

DOI (link to publication from Publisher):
https://doi.org/10.1016/j.knosys.2018.12.030

Publication date:
2019

Document Version:
Accepted author manuscript, peer reviewed version

Citation for published version (APA):

Cabañas, R., Salmerón, A., & Masegosa, A. R. (2019). InferPy: Probabilistic
modeling with Tensorflow made easy. Knowledge-Based Systems, 168, 25-27.

https://doi.org/10.1016/j.knosys.2018.12.030

InferPy: Probabilistic Modeling Made Easy

Rafael Cabañas, Andrés R. Masegosa, Antonio Salmerón

University of Almeŕıa, ES-04120 Almeŕıa, Spain

Abstract

InferPy is a high-level Python API for probabilistic modeling built on top of
Edward and Tensorflow. InferPy, which is strongly inspired by Keras, focuses
on being user-friendly by using an intuitive set of abstractions that make easy
to deal with complex probabilistic models. It should be seen as an interface
rather than a standalone machine-learning framework. In general, InferPy
has the focus on enabling flexible data processing, easy-to-code probabilistic
modeling, scalable inference and robust model validation.

Keywords: Probabilistic programming, Hierarchical probabilistic models,
Latent variables, Tensorflow, User-friendly

1. Introduction1

Machine learning (ML) [1] is a fundamental part of artificial intelligence2

[2], and the key of many innovative applications. Unfortunately, for a com-3

pany or an institution, the development of ML models specific to their prob-4

lems requires enormous e↵orts [3]. For this reason, probabilistic program-5

ming languages (PPLs) [4] are an active area of research. PPLs o↵er the6

same advantages to the ML community that high-level programming lan-7

guages o↵ered to software developers fifty years ago [5]. Programmers could8

specialize in model development while ML experts could focus their e↵orts9

on developing reusable inference engines. Thus, the number of non-experts10

who can create applications using a PPL could increase. Special attention re-11

quires those PPLs which exploit recent advances in probabilisitic inference for12

defining probabilistic models containing deep neural networks [6, 7]. These13

Email addresses: rcabanas@ual.es (Rafael Cabañas), andresmasegosa@ual.es
(Andrés R. Masegosa), antonio.salmeron@ual.es (Antonio Salmerón)

Preprint submitted to Knowledge-Based Systems

PPLs rely on deep learning libraries like Tensorflow [8]. Their main drawback14

is the high complexity of the abstractions, specially those centered around15

the definition of probability distributions over multidimensional Tensors.16

InferPy1 tries to address these issues by defining a user-friendly API which17

trades-o↵ model complexity with ease of use. Complex operations over Ten-18

sor objects are hidden to the user. Similarly, Edward’s flexible approach to19

probabilistic inference demands to provide specific details such as the varia-20

tional family. Again, InferPy gives the possibility to hide all this information21

and make inference with a single line of code. As InferPy uses Tensorflow as22

computing engine, all the parallelization details are hidden to the user.23

2. Background24

InferPy focuses on hierarchical probabilistic models structured in two lay-25

ers: (i) a prior model defining a joint distribution p(w) over the global pa-26

rameters of the model (w can be a single random variable or a bunch of27

random variables with any given dependency structure); (ii) a data or ob-28

servation model defining a joint conditional distribution p(x, z|w) over the29

observed quantities x, and the the local hidden variables z governing the30

observation x. As a running example, Figure 1 shows a model of this type.31

xn zn p

µk

�k

NK

p ⇠ DirK(↵)

zn ⇠ CatK(p)

xn ⇠ Nd(µzn ,�zn)

µk ⇠ Nd(0, I)

�k ⇠ InvGamma(0, 1)

Figure 1: Mixture of K d-dimensional Gaussian distributions learned from N observations.

3. Software Framework32

3.1. Model Definition33

In InferPy, models are specified using a simple language of random vari-34

ables, which are grouped in a probabilistic model object (i.e., defined using35

the construct with inf.ProbModel() as m:) defining a joint distribution36

over observable and hidden variables p(w, z,x). As an example, we provide37

in Figure 2 how the model of Figure 1 would be defined in InferPy.38

1
Home: inferpy.readthedocs.io; Source: github.com/PGM-Lab/InferPy

2

http://inferpy.readthedocs.io
https://github.com/PGM-Lab/InferPy

1 ## model definition ##
2 with inf.ProbModel () as model:
3

4 # prior distributions
5 with inf.replicate(size=K):
6 mu = inf.models.Normal(loc=0, scale=1, dim=d)
7 sigma = inf.models.InverseGamma (1, 1, dim=d)
8 p = inf.models.Dirichlet(np.ones(K)/K)
9

10 # define the generative model
11 with inf.replicate(size=N):
12 z = inf.models.Categorical(probs = p)
13 x = inf.models.Normal(mu[z], sigma[z],
14 observed=True , dim=d)

Figure 2: InferPy code for the Mixture of Gaussians model of Figure 1.

InferPy allows to specify our model in a single sample-basis, resembling39

the standard plateau notation, with the with inf.replicate(size=N) con-40

struct (Line 5). The dimension N is the number of replicas. The dimension41

of each variable can be specified either using the input parameter dim (Line42

6), or by the length of the distribution parameters (e.g., other InferPy vari-43

able, NumPy’s ndarray [9], a tensor or a Python list). For example, variable44

x in the previous code contains N replicas of d independent Gaussian dis-45

tributions and, in consequence, has two dimensions (i.e., shape = [N, d]).46

Like in Edward, each random variable y is associated to a tensor y⇤ repre-47

senting a sample from its distribution. Note that when operating on y, the48

operation is indeed done on y⇤. In the previous code, the mean (i.e., loc) of49

x is a sample from the distribution obtained by indexing mu with a sample50

from z. Any variable defined in InferPy encapsulates an equivalent one in51

Edward, which can be obtain by accessing the property dist. The user does52

not deal with tensor objects unless it is explicitly specified, e.g.: z.sample()53

returns an array of samples while z.sample(tf run=False) allows to obtain54

the equivalent (lazily evaluated) Tensor object.55

3.2. Approximate Inference56

InferPy directly relies on top of Edward’s inference engine. In particu-57

lar, InferPy inherits Edward’s approach and considers approximate inference58

solutions in which the task is to approximate the posterior with a simpler59

distribution q. Unlike Edward, InferPy o↵ers the possibility to hide all these60

details about the definition of this q distribution, making the inference more61

3

simple for non-advanced users. Figure 3 shows the code for making inference62

in the model defined in the previous section.63

1 # compile and fit the model with training data
2 data = {x: x_train}
3 model.compile(infMethod="MCMC")
4 model.fit(data)
5 # print the posterior
6 print(model.posterior(mu))

Figure 3: Code for making inference in the Mixture of Gaussian model of Figure 2.

4. Comparison with Edward64

The analogous Edward code for making inference in a mixture of Gaus-65

sians, which can be found in our online documentation2, has some drawbacks66

compared to the code in InferPy (Figures 2 and 3). First, the model definition67

is more complex because this is not done in a single-sample basis. This can be68

specially problematic when defining the dependencies among variables. For69

example, the mean of x is specified using the function tf.gather which is70

not always intuitive, i.e. loc=tf.gather(mu,z). Secondly, Edward requires71

to have a strong knowledge about the inference algorithms for specifying all72

its parameters. For the running example, a q and g variable is defined for73

each latent variable in the model. For variable mu, this is done as follows.74

1 qmu = ed.models.Empirical(params=tf.get_variable(
2 "qmu/prm", [T,K,d],
3 initializer=tf.zeros_initializer ()))
4 gmu = ed.models.Normal(loc=tf.ones([K,d]),
5 scale=tf.ones([K,d]))

Figure 4: Edward’s code for defining the q distribution for the model of Figure 2.

5. Conclusions75

We have briefly presented InferPy, a high-level API for probabilistic mod-76

eling built on top of Edward and Tensorflow. The use of intuitive abstractions77

such as the plateau notation simplifies the task of defining complex hirearchi-78

cal probabilistic models. In the future, we aim to fully integrate InferPy with79

Keras, allowing simple probabilistic modeling with deep neural networks.80

2https://inferpy.readthedocs.io/en/latest/notes/inf_vs_ed.html

4

https://inferpy.readthedocs.io/en/latest/notes/inf_vs_ed.html

Acknowledgements81

Authors have been jointly supported by the Spanish Ministry of Science,82

Innovation and Universities and by the FEDER under the projects TIN2015-83

74368-JIN, and TIN2016-77902-C3-3-P.84

References85

[1] K. P. Murphy, Machine learning: A probabilistic perspective. adaptive86

computation and machine learning (2012).87

[2] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach,88

Malaysia; Pearson Education Limited,, 2016.89

[3] Z. Ghahramani, Probabilistic machine learning and artificial intelligence,90

Nature 521 (7553) (2015) 452.91

[4] A. D. Gordon, T. A. Henzinger, A. V. Nori, S. K. Rajamani, Probabilistic92

programming, in: Proceedings of the on Future of Software Engineering,93

FOSE 2014, ACM, 2014, pp. 167–181.94

[5] R. L. Wexelblat, History of programming languages, Academic Press,95

2014.96

[6] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, D. M. Blei,97

Edward: A library for probabilistic modeling, inference, and criticism,98

arXiv preprint arXiv:1610.09787.99

[7] I. Uber Technologies, Pyro deep universal probabilistic programming,100

http://pyro.ai, accessed 2017-07-31 (2017-2018).101

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,102

S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: a system for large-103

scale machine learning., in: OSDI, Vol. 16, 2016, pp. 265–283.104

[9] S. v. d. Walt, S. C. Colbert, G. Varoquaux, The numpy array: a structure105

for e�cient numerical computation, Computing in Science & Engineering106

13 (2) (2011) 22–30.107

5

http://pyro.ai

Metadata108

Current executable software version109

Nr. (executable) Software
metadata description

S1 Current software version 0.2.1
S2 Permanent link to executables

of this version
https://pypi.org/project/inferpy/0.2.1/

S3 Legal Software License Apache 2.0
S4 Computing platform/Operat-

ing System
for example Linux, OS X, Microsoft Windows,
Unix-like

S5 Installation requirements &
dependencies

Pip, Python 2.7-3.6, Edward 1.3.5, Tensorflow
1.5-1.7, Numpy 1.14 or higher, Pandas 0.15.0 or
higher.

S6 Link to user manual https://inferpy.readthedocs.io/
S7 Support email for questions inferpy.api@gmail.com

Table 1: Software metadata

Current code version110

Nr. Code metadata descrip-
tion

C1 Current code version 0.2.1
C2 Permanent link to code/repos-

itory used of this code version
https://github.com/PGM-Lab/InferPy/tree/0.2.1

C3 Legal Code License Apache 2.0
C4 Code versioning system used github
C5 Software code languages, tools,

and services used
Python

C6 Compilation requirements, op-
erating environments

Python 2.7-3.6, Edward 1.3.5, Tensorflow 1.5-1.7,
Numpy 1.14 or higher, Pandas 0.15.0 or higher.

C7 Link to developer documenta-
tion/manual

https://inferpy.readthedocs.io/

C8 Support email for questions inferpy.api@gmail.com

Table 2: Code metadata

6

	Introduction
	Background
	Software Framework
	Model Definition
	Approximate Inference

	Comparison with Edward
	Conclusions

