Publications
I highlight my most relevant publications. You can visit my google scholar profile for the complete list.
-
Cabañas, R., Gómez-Olmedo, M., & Cano, A. (2016). Using binary trees for the evaluation of influence diagrams. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 24(01), 59-89.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q3]
Preprint
Publisher
-
Cabañas, R., Cano, A., Gómez-Olmedo, M., & Madsen, A. L. (2016). Improvements to variable elimination and symbolic probabilistic inference for evaluating influence diagrams. International Journal of Approximate Reasoning, 70, 13-35.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q2]
Preprint
Publisher
-
Cabañas, R., Antonucci, A., Cano, A., & Gómez-Olmedo, M. (2017). Evaluating interval-valued influence diagrams. International Journal of Approximate Reasoning, 80, 393-411.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q2]
Preprint
Publisher
-
Masegosa, A. R., Martinez, A. M., Ramos-López, D., Cabañas, R., Salmerón, A., Langseth, H., ... & Madsen, A. L. (2019). AMIDST: A Java toolbox for scalable probabilistic machine learning. Knowledge-Based Systems, 163, 595-597.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q1]
Preprint
Publisher
-
Cabañas, R., Salmerón, A., & Masegosa, A. R. (2019). InferPy: Probabilistic modeling with Tensorflow made easy. Knowledge-Based Systems, 168, 25-27.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q1]
Preprint
Publisher
-
Cózar, J., Cabañas, R., Salmerón, A., and Masegosa, A. R. InferPy: Probabilistic modeling with deep neural networks made easy. Neurocomputing, 415 (2020), 408-410.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q1]
Preprint
Publisher
-
Masegosa, A. R., Cabañas, R., Lanseth, H., Nielsen, T. D., and Salmerón, A. Probabilistic Models with Deep Neural Networks. Entropy, 23 (2021), 117
PHYSICS, MULTIDISCIPLINARY - SCIE [Q2]
Preprint
Publisher
-
Gómez-Olmedo, M., Cabañas, R., Cano, A., Moral, S., and Retamero, O. P. Value-Based Potentials: Exploiting Quantitative Information Regularity Patterns in Probabilistic Graphical Models. International Journal of Intelligent Systems. 2021
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q1]
Preprint
Publisher
-
Zaffalon, M., Antonucci, A., Cabañas, R., & Huber, D. (2023). Approximating counterfactual bounds while fusing observational, biased and randomised data sources. International Journal of Approximate Reasoning, 162, 109023.
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q2]
Preprint
Publisher
-
Zaffalon, M., Antonucci, A., Cabañas, R., Huber, D., & Azzimonti, D. (2024). Efficient computation of counterfactual bounds. International Journal of Approximate Reasoning, 109111
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE [Q2]
Preprint
Publisher
-
L.A. Ortega, R. Cabañas, A.R. Masegosa. (2022). Diversity and Generalization in Neural Network Ensembles. In International Conference on Artificial Intelligence and Statistics PMLR
Conference paper [Core A]
Preprint
Publisher